[image: image1]
Agile Requirements Elicitation

Software Engineering

2004-2005

Marco Scotto (Marco.Scotto@unibz.it)

Software Engineering

[image: image4.png]

Content

Introduction

Requirement analysis

Characteristics of Agile Requirements User Stories

Gathering User Stories Acceptance Tests The three Beasts

Software Engineering
2

[image: image5.png]

Introduction

Agile practices are based on the belief that neither the customer nor the developers have full knowledge in the beginning and that the important consideration is having practices that will allow both [the customer and the developer] to learn and evolve as that knowledge is gained - without ongoing recrimination.

Software Engineering
3

[image: image6.png]

Content

Introduction

Requirement analysis

Characteristics of Agile Requirements User Stories

Gathering User Stories Acceptance Tests The three Beasts

Software Engineering
4

[image: image7.png]

Requirement analysis

We cluster under this term several, often unrelated, activities, including:

· Requirement elicitation from the users

· Requirement engineering, to determine the best configuration of requirements

· Requirement management, to organize the requirements in a structure easy to deal

· Analysis of the system to build

Software Engineering
5

[image: image8.png]

A web of activities and proposals

Including:

· Customer whish-lists

· Formal specifications

· Executable specifications and logic programming

· E-R diagrams

· Scenario-based techniques

· Petri nets

Software Engineering
6

[image: image9.png]

Requirements Issues

What?

· Example: “Be able to configure all the variables, like user name, password, access level”

Effort required?

• Example: “1 week”

Software Engineering
7

[image: image10.png]

Requirements Issues (cont.)

Priority?

· Example: “Configuring the password is the most important thing, then access level, then user name”

Risk?

• Example: “Are the developers familiar with encryption technology?” [image: image45.png]

Software Engineering
8

[image: image11.png]

Key Principles

Separate the “what” from the “how”

· Requirements should not assume a particular design or implementation

· What: “Information on ordered books shall be persistently stored”

· How: “Information on ordered books shall be stored using Database A”

Must be clear enough so that you know what to build and how to verify that you built it correctly

Software Engineering
9

[image: image12.png]

Controversial Thought:

Requirements versus Wishes

Requirement:

· That which is required; an imperative or authoritative command; an essential condition; something needed or necessary; a need.

How do you prioritize “essential conditions”?

Sometimes not all “requirements” are essential to successfully complete a [image: image2] software project. [image: image3]
Wishes?
Software Engineering
10

[image: image13.png]

Types of Requirements (1/3)

There are three kinds of requirements:

· Functional Requirements

· Non-functional requirements

· Constraints

Functional requirements: Describe the interactions between the system and its environment independent from implementation

The watch system must display the time based on its location

Software Engineering
11

[image: image14.png]

Types of Requirements (2/3)

Non-functional requirements: User visible aspects of the system not directly related to its functional behavior

The response time must be less than 1 second The accuracy must be within a second

The watch must be available 24 hours a day except from 2:00am-2:01am and 3:00am-3:01am

Software Engineering
12

[image: image15.png]

Types of Requirements (3/3)

Constraints (“Pseudo requirements”): Imposed by the client or the environment in which the system will operate

The implementation language must be COBOL.

Must interface to the dispatcher system written in 1956.

Software Engineering
13

[image: image16.png]

What is usually not a requirement?

System structure, implementation technology

Development methodology

Development environment

Implementation language

It is desirable that none of these above are constrained by the client. Fight for it!

Software Engineering
14

[image: image17.png]

Requirements Validation

Critical step in the development process,

· Usually after requirements engineering or requirements analysis. Also at delivery

Requirements validation criteria:

• Correctness:

⌦The requirements represent the client’s view

• Completeness:

⌦All possible scenarios through the system are described, including exceptional behavior by the user

Software Engineering
15

[image: image18.png]

Requirements Validation Criteria (cont)

• Consistency:

⌦There are functional or nonfunctional requirements that contradict each other

• Clarity:

⌦There are no ambiguities in the requirements

• Realism:

⌦Requirements can be implemented and delivered

• Traceability:

⌦Each system function can be traced to a corresponding set of functional requirements

Software Engineering
16

[image: image19.png]

Formalizing Requirements

Verbal

Written

• Notes on paper, index cards, sticky notes, formal documents

• Web sites

Prototyping

· But remember, “Prototyping is a learning experience. Its value lies not in the code produced, but in the lessons learned.” (Hunt and Thomas, 2000)

Software Engineering
17

[image: image20.png]

Scenarios-Based Requirement Elicitation

We will focus on scenario-based requirements elicitation, where a scenario is:

· “A narrative description of what people do and experience as they try to make use of computer systems and applications” (M. Carrol, Scenario-based Design, Wiley, 1995)

· A concrete, focused, informal description of a single feature of the system used by a single actor.

Gathered by observing and interviewing users

Software Engineering
18

[image: image21.png]

Requirements Example

Use Case – A piece of functionality in the system that gives a user a result of value (Jacobsen et al., 1999)

· Think scenario or story of the system being used

Bank machine example (Jacobsen et al., 1999)

Software Engineering
19

[image: image22.png]

Content

Introduction

Requirement analysis

Characteristics of Agile Requirements

User Stories Gathering User Stories Acceptance Tests The three Beasts

Software Engineering
20

[image: image23.png]

Agile Requirements Elicitation

The hardest part of the software task is arriving at a complete and consistent specification, and much of the essence of building a program is in fact the debugging of the specification

– Fred Brooks, 1987

There is nothing that focuses requirements better than seeing the nascent system come to life. Therefore, capturing the specific details about the requirement long before it is implemented is likely to result in wasted effort and premature focusing.

Software Engineering
21

[image: image24.png]

Agile Requirements in XP

Software Engineering
22
[image: image25.png]i
P "4 Extreme Programming Project

Extreme Programming

Test Scenatios

New User Story

User Stories . .
Requirements Project Velocity Bugs

Latest

. Systemn Release A Customer
Architecturalgyo o, Relﬁfse Plan Versuon Acceptance Anproval | Small
Tests Releases

Spike — " Plamnng@\
Uncerain Confident
Estimates Estimates

Splke Copynght 2000). Doavan Wells

Features of Agile Requirements

Suitable for projects with a lot of change, not for stable projects with safety-critical implications

Agile requirements are expressed as high-level, brief written statements of the best information fairly easily available.

Not fully documented form of the requirements

Software Engineering
23

[image: image26.png]

Characteristics of Agile

Requirements (1/2)

Frequent, personal interactions with customers and/or stakeholders

(in XP: customer on-site)

· Necessary for the developers to understand the details of what the customer really wants

Frequent delivery of software to customers (in XP: weekly iteration)

· Only when the customer can actually use the evolving project, can he/she provide feedbacks and new, refreshed view of follow-on requirements based on the progress so far

Software Engineering
24

[image: image27.png]

Characteristics of Agile

Requirements (2/2)

Expressing Requirements as Features

· A feature is a short phrase that describes what the customer wants

E.g. Items on auction can be added, deleted, and modified

Expressing Requirements as User Stories

· Of the agile methodologies, XP one specifies its requirements practices with the most detail and rigor

Software Engineering
25

[image: image28.png]

Content

Introduction

Requirement analysis

Characteristics of Agile Requirements

User Stories

Gathering User Stories Acceptance Tests The three Beasts

Software Engineering
26

[image: image29.png]

User Stories basics

User stories are a simple, few-sentence description of a functional requirement that provides value to a stakeholder

User stories are written by a customer

User stories are usually written on an index card which is passed to the team member who will work on it

Developers estimate how long the stories might take to implement

· ideal development time: how long it would take to implement the story in code without distractions, other assignments and problems

	Each story should be implemented in one
	

	iteration
	Software Engineering
	27

	
	
	

[image: image30.png]

Content

Introduction

Requirement analysis

Characteristics of Agile Requirements

User Stories

Gathering User Stories

Acceptance Tests

The three Beasts

Software Engineering
28

[image: image31.png]

Gathering User Stories

Goal-oriented approach:

· starting point: goal of the system

· what steps does the user need to achieve the goal?

· describe them as user stories

Scattergun approach:

· no structure is imposed on the way the meeting progresses
· user stories are generated as expectations arise in a conversation
Story writing is iterative and interactive

Software Engineering
29

[image: image32.png]

How to Write an Agile Requirement User Story

User stories appear on an index cards like this:

Title: Login

Acceptance Test: LoginTest
Priority: 2
Story Points: 2

A user has to input his/her nickname and password to login the system. If the combination of the nickname and password is not correct, an error message will show, and the user has to input the nickname and password again.

Personal page and bid functionality are available only when the user logs in successfully. Administrative functionality is available only when the user with administrative privileges logs in successfully.

Software Engineering
30

[image: image33.png]

Explanation of the example

Title. Write a two or three word title for this user story. The title should begin with a present-tense verb phrase in active voice (similar to the name of a use case). Write this title in the middle of the top line of an index card.

Acceptance Test. List the unique identifiers of the acceptance tests for the user story. The unique identifier can be a word (such as the example above) or a alphanumeric string.

Priority. The customer must decide how important each of the stories is so that the most important stories can be done first. We are using a 1-2-3 priority scheme where a 1 is given to the most important stories.

Story Points. The number of days of ideal development time.

Description: Write 1-2 sentences which are a single step toward achieving the goal.

Software Engineering
31

[image: image34.png]

Criteria for User Stories

Stories must be understandable to the customer (natural language!)

Each story must provide value to the customer Developers do not write stories

Stories need to be of a size that several of them can be completed in each iteration

Stories should be independent of each other as possible (no inter -dependency freedom to schedule the work for the developer)

Each story must be testable

Software Engineering
32

[image: image35.png]

Content

Introduction

Requirement analysis

Characteristics of Agile Requirements

User Stories

Gathering User Stories

Acceptance Tests

The three Beasts

Software Engineering
33

[image: image36.png]

Acceptance Tests

An acceptance test is a test case written by the customer (in partnership with the developers)

· Verifies that the user story has been correctly implemented
The details about the user stories are captured in the form of acceptance tests specified by the customer

Traceability between the user story and the acceptance test(s) used to verify that user story

At least one acceptance test case per user story

Software Engineering
34

[image: image37.png]

Additional requirements

Non-functional requirements and the constraints are hard to be written as user stories

The user story cards should be augmented with a listing of non-functional requirements and constraints

• for example: the system must be 96% reliable

Software Engineering
35

[image: image38.png]

Ex. Non-functional requirements and constraints

Non-functional requirements

1. All transactions must complete within 5 seconds of the submit button being clicked.

2. The mean-time-to-failure (MTTF) must be a minimum of 1000 hours. Failure downtime must not exceed 10 minutes.

Constraints

1. The system shall be run on a web server that uses the Tomcat application server.

2. The system shall be run on a web server that uses a MySQL database.

3. The system shall be developed using Java Server Page (JSP)

Software Engineering
36

[image: image39.png]

User story summary

	User Stories
	Priority
	Points
	Acceptance Tests

	Browse auction items
	1
	7
	BrowseTest

	View item information
	1
	3
	ItemPageTest

	Register
	2
	3
	RegisterTest

	Login
	2
	2
	LoginTest

	View/Update personal
	2
	3
	PersonalInfoTest

	information
	
	
	

	Place Bid
	2
	4
	BidTest

	Add items
	2
	3
	ItemAddTest

	Access appropriate page
	3
	2
	MainPageTest

	Update item status
	3
	4
	ItemUpdateTest

	Maintain Categories
	3
	3
	CategoryUpdateTest

	Maintain user information
	3
	2
	UserInfoTest

	Total Story Points
	
	38
	

Software Engineering
37

[image: image40.png]A A

A A A A

A A

A second user story example

Register

Acceptance Test: RegisterTest
Priority: 2
Point: 3

The users can register online. A registration page asks the user’s information, including the name of the user, a nickname (serves as the user ID), birthday, address, phone number, and email address. After registration, the user will get a temporary password that he/she may change later. If the nickname is already registered, an error message will show and the user will have to choose another nickname.

To be registered as a seller, in addition to the user information, he/she also has to provide the SSN. If the SSN is already registered, the user will not be allowed to register again.

Software Engineering
38

[image: image41.png]

Sample Acceptance Test

Software Engineering
39

[image: image42.png]IteraPageTests

Precondmon -Test-database-loaded]
Without-logging-in, -a-user-clicks-
Browse-by-Category-fror-the main-
page.--The-user-is-then-presented-with-a-
list-of-categories.--The-user-selects-
Cameras-and-Sort-hy-Price
Precondition:--Test-database-loadedy]
Without-logging-in, -a-user-clicks-
Browse-by- Category frorm-the rmain-
page.--The-useris-then-presented-with-a-
Iist-of-categories.--The-user-selects-
Cameras-and-Sort-by-Price --The-user-
clicks-on-Ivlinolta- 2500z

- - 1
Kodax-3400 $128 991[
Polaroid PDC---$60. .05z

Ivlinolta- 25009
Itern:--06157
Time-Left:--1-hours,-4-
rins -+
Bid-Increment:--$107
Payruent:--PayPalf

A camera that would:
take the'guessworout:
of fooausing or choosing:*
the'right settings ,»and-
ata'price that you
could afford. ‘Minolta's:
2500-has what yourare:

_ looking for. 9§

seridx:

Bid:
s herris -

Proposed exercise

Write a few user stories for a traffic light system.

Software Engineering
40

[image: image43.png]

Content

Introduction

Requirement analysis

Characteristics of Agile Requirements

User Stories

Gathering User Stories Acceptance Tests

The three Beasts

Software Engineering
41

[image: image44.png]

Agile Requirements and the three

Uncertainty

beasts

· Agile requirements embraces change, allowing the uncertain to resolve itself as project development proceeds

Irreversibility

· Since agile requirements consume less resource, the requirements may be economically reversible

Complexity

· By attacking each requirement in turn rather than trying to digest the entire project at once, project development can be kept within the intellectual control of the team

Software Engineering
42

