Test Plan Guideline

Testing Background

Testing is one technique for making sure that the product is of sufficient quality. Testing is divided into verification and validation:

verification: Does the software meet the user's real needs? Are we building the right software?
validation: Does the software specification meet the requirements specification? Are we building the software right?
Verification is typically conducted by getting feedback from the users. It is not a good idea to wait until the end of the project to get feedback. Instead, you should be solicited feedback throughout the process. In fact, source code is not even necessary. Reviewing the requirements, analyzing the software specification, and getting feedback from a mock-up GUI are examples of verification activities.

Validation is responsible for making sure the actual software implementation meets the requirements and works correctly. Requirements are typically divided into non-functional and functional requirements.

 Non-functional requirements include things like performance, scalability, and maintainability. The approach to testing these requirements is quite different than functional requirements. Non-functional typically require the entire system in order to validate.

Testing functional requirements typically involves making sure that program, given a particular input, produces the expected output. Testing is often done at several levels:

· Unit testing: Testing individual units within the software. A unit is typically a class (or set of related classes) for OO programs or a function (or set of related functions) for imperative programs. Thorough testing is done to make sure the unit works properly before it is integrated with other units. There are unit testing frameworks that can automate the process.
· Integration testing: Testing the interactions between different units that interact with one another.

· System testing: Testing the overall system as a whole.

The primary goal for testing is to find bugs. Testing should be thorough testing both valid and invalid input combinations. It is also helpful to have tests that make sure the common cases work correctly. To this end, some test cases should be based on use cases.
Test Plan Document

Introduction

What is the project and the product? Provide enough detail should be provided about the product context (web?, database?, etc.) that implications on testing can be considered.
Verification Strategy

Describe how you will make sure that the software meets the user's real needs. How and when will you get feedback from user? What artifacts will used in obtaining the feedback (requirements documents, GUI mock-ups, actual software itself, etc.)?
Non-Functional Testing and Results
Describe how you will test each of your non-functional requirements, providing one or more specific tests (using the table template provided on the next page). Once you have executed a test, you need to document the result.

Functional Testing Strategy

Describe your testing strategy. Which of the major categories of testing (unit, integration, system, etc.) will you perform? Under what conditions are they performed? For example, how often is system test done? Once per day, per week, per sprint? Also describe your testing approach. In particular, how are you going to create your planned test cases. Include your reasons for all of these decisions.
This section you should also describe how you are going to handle bugs. Are you going to use a bug-tracking tool such as Bugzilla? Are you going to use a less formal method such as a spreadsheet. You should specifically describe the categories of bugs (“severe”, “warning”, etc.) you will use and how their statuses (“fixed”, “tested”, etc.) will be indicated.
Adequacy Criterion

Testing is expensive, so management of the test process is essential. Most important is having an objective criterion for completion. That is, it is not sufficient to simply declare victory because the planned release date has been reached. Here are some examples of adequacy criteria:
· Make sure that at least one test exists for each method written.

· Make sure that sufficient tests exist that each line of program code is executed by at least one test.

· Make sure that at least one test exists for each requirement and for each use case.
You should describe your adequacy criteria and your reasons for choosing them.
Test Cases and Results
The most important part of the test plan is the actual list of tests to be executed. Your entries in this list should be sufficiently detailed that someone else on the project could construct and execute the test based on the test description. Your test plan serves not only to describe what should be tested, but it also documents the results of the tests. Particularly for failed tests, it should hold sufficient information so that the developer tasked with fixing the problem can recreate it. Note: If you are using a separate problem/bug tracking tool, you can merely include a reference to the problem number.
Here is a sample table. It might be useful to have separate tables with each table focusing on different parts of the program and/or different levels of testing.
	Test #
	Requirement

Purpose
	Action / Input
	Expected Result
	Actual Result
	P/F
	Notes

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	Seattle University – Master of Software Engineering Program | Test Plan Guideline
	1

