	[image: image1.png]M UNIVERSITY OF MINNESOTA

R Driven to Discover

	[image: image2.jpg]UNIVERSITY SERVICES
PROGRAM . M ANAGEMENT.OFFICE

Department or Program Name

[System/Application Name]

	Quality Assurance
Test Plan

Project QA/Test Plan

Template Guidelines

To aid in the creation of a successfully completed Project QA/Test Plan, please review the following guidelines. For additional instructions and information, please refer to the University Services Program Management Office. Remove these guidelines from the completed document.
	Purpose
	The Project QA/Test Plan is an umbrella plan that encompasses the entire testing required for a project. It is the highest level testing plan that documents the testing strategy for the project, describes the general approach that will be adopted in testing , provides the overall structure and philosophy for any other required testing documents, and defines what will be tested to assure the requirements of the product, service, or system (i.e., the deliverables) are met.

Based on the size, complexity, and type of project, subsequent test plans may be created and used during the testing process to verify that the deliverable works correctly, is understandable, and is connected logically. These test plans include the following categories and types. Testing areas/coordinators would have templates specific to these plans.

Types of quality assurance planning include:

· Process QA plans document how the project is meeting quality and compliance standards ensuring the right documentation exists to guide project delivery and corrective actions, and

· Requirements/application test plans document how the product, service or system meets stated business and technical requirements, and how it will work within the defined operational/business processes and work flow.

Test plans typically used for development efforts include:

· Unit Test Plans (UT) documents what the programmer is coding for a particular screen or unit.

· Integrated Systems Test Plan (IST) documents how the system will be tested to assure major errors are fixed and how end-to-end testing between one-off applications will occur.

· Integration Application Test Plans (IAT) documents how applications will test end-to-end all new functionality across all applications.

· User Acceptance Testing (UAT) documents how the users, who will be supporting the new and existing functionality in production, will test this new functionality prior to production installation.

· Operations Interface Readiness Test Plan (OIR) documents how the operations user will test all new and existing functionality.

Testing approaches that may be used to test or validate projects that have high risk or impact include:

· Regression Testing ensures all fixes identified during IAT and UAT were made to the system and did not impair key existing functionality (used mainly with new major software development projects).

· Conversion Integration Application Testing is used to simulate the first couple of processing days following a conversion.

· Prototype is a technique used either in the design, build, or testing stage to construct a model of the product, service, or system to verify a function, a design, how a particular module or program works, etc.

· Proof of Concept is used to test an idea in a controlled environment to test new features.

· Alpha Testing tests a new product, service, or system before implementation where it may have major impacts and the project team wants to identify major problems/bugs before implementation (or goes into production).

· Beta Testing differs from Alpha Testing in the amount of testing and clean-up that needs to be performed. The project should be ready for implementation.

· Pilot is a limited use of the product, service, or system by a remote site, subset of the customer base, etc. This testing technique is used to work out logistical problems, validate the deliverable, and minimize impact by limited rollout.

· Parallel Testing occurs when the old and the new product, service, or system are running simultaneously to allow the project customer to check that the deliverable is working per specifications.

· Stress/Load Testing ensures the system will perform reliably during full production and heavy workloads.

· Operational/Business Readiness Testing walks through the operational/business processes and workflows to ensure that procedures, documentation, reconciliation, training, and work flows are complete and correct.

	Ownership
	The Project Manager is responsible for ensuring that all testing plans are created and identifies them under one umbrella plan (i.e., the Master Project QA/Test Plan). The project testing team lead(s) develop the necessary subsequent test plans.

	When
Phase: Design

Stage: Planning
	The Project QA/Test Plan is completed during the Design phase of the Solution Delivery Life Cycle. It should be updated anytime additional information or project changes affect its content.

It is a required deliverable on Large and Medium projects, and a best practice on Fast Track projects. For additional guidance, the Project Classification Worksheet is available.

	Template Completion
Note: Text within < > brackets need to be replaced with project-specific information.
	1. Do not include the Template Guidelines in your final document. Enter the project information in the page header and footer, title page, and document contributors and version control.

2. Complete the document utilizing suggested text where applicable and entering text/fields where shown within <blue text> brackets. Note that the blue text is NOT to be included in your final document. Its purpose is to either provide guidance for completing the document, or to show where text/fields are to be input.

3. Once changes are made to your document and you’re ready to finalize, ensure that you update your Table of Contents (TOC) section. To Update the TOC: If you are unsure how to do this, place your mouse arrow to the left of the first entry in the Table of Contents section and click the left button once. Once the entire section is highlighted, move the mouse arrow anywhere within the highlighted section and click the right button once. In the drop-down menu, choose Update Field and Page Numbers Only or Entire Field as needed. Note that you might need to repeat the aforementioned steps to change the font back to Tahoma 10 pt.

4. The Master Test Plan is to be retained with other project-related documentation and maintained in accordance with the business line’s records retention policy.

	Empowerment & Scalability
	This template is provided as a guideline to follow in producing the minimum basic information needed to successfully complete a Project QA/Test Plan in meeting PMO guidelines and illustrates the art and science of project management. Project Managers are empowered to use this template as needed to address any specific requirements of the proposed project at hand. The amount of detail included in the template will depend on the size and complexity of the project.

	Important Notice
	As this template may change, it is highly recommended that you access a blank template from the Program Management Office website (http://www.uservices.umn.edu/pmo/) each time you need one for a new project and not merely use one from a previous project by changing the old text.

Document Information and Approvals
	Version History

	Version #
	Date
	Revised By
	Reason for change

	1.0
	4/27/12
	Aaron Demenge
	PMO Review

	
	
	
	

	
	
	
	

	
	
	
	

	Document Approvals

	Approver Name
	Project Role
	Signature/Electronic Approval
	Date

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

1Introduction

1Scope

1Test Objectives

1Testing Goals

2Test Methodology

2Entrance Criteria

2Exit Criteria

2Test Execution

3Test Scenarios

4Test Case/Script Development

4Defect Reporting

5Test Environment

5Software Requirements

5Hardware Requirements

5Testing Platform

5User Acceptance Test Plan

5Definition

6Testing Requirements

6Testers/Participants

6Testing Schedule

7Assumptions and Risks

7Assumptions

7Risks

7Go/No-go Meeting

8Additional Project Documents

8Roles and Responsibilities

9Sign-off and Acknowledgement

11Test Director – Defect Tracking Process

Introduction

Scope

The overall purpose of testing is to ensure the {name of application} application meets all of its technical, functional and business requirements. The purpose of this document is to describe the overall test plan and strategy for testing the {name of application} application. The approach described in this document provides the framework for all testing related to this application. Individual test cases will be written for each version of the application that is released. This document will also be updated as required for each release.

Test Objectives

The quality objectives of testing the {name of application} application are to ensure complete validation of the business and software requirements:

· Verify software requirements are complete and accurate

· Perform detailed test planning

· Identify testing standards and procedures that will be used on the project

· Prepare and document test scenarios and test cases

· Regression testing to validate that unchanged functionality has not been affected by changes

· Manage defect tracking process

· Provide test metrics/testing summary reports

· Ensure the application is certified for release into the University of Minnesota production environment

· Schedule Go/No Go meeting

· Require sign-offs from all stakeholders

Testing Goals

The goals in testing this application include validating the quality, usability, reliability and performance of the application. Testing will be performed from a black-box approach, not based on any knowledge of internal design or code. Tests will be designed around requirements and functionality.
Another goal is to make the tests repeatable for use in regression testing during the project lifecycle, and for future application upgrades. A part of the approach in testing will be to initially perform a ‘Smoke Test’ upon delivery of the application for testing. Smoke Testing is typically an initial testing effort to determine if a new software version is performing well enough to accept it for a major testing effort. For example, if the new software is crashing frequently, or corrupting databases, the software is not in a stable enough condition to warrant further testing in its current state. This testing will be performed first. After acceptance of the build delivered for system testing, functions will be tested based upon the designated priority (critical, high, medium, low).

Quality

Quality software is reasonably bug-free, meets requirements and/or expectations, and is maintainable. Testing the quality of the application will be a two-step process of independent verification and validation. First, a verification process will be undertaken involving reviews and meetings to evaluate documents, plans, requirements, and specifications to ensure that the end result of the application is testable, and that requirements are covered. The overall goal is to ensure that the requirements are clear, complete, detailed, cohesive, attainable, and testable. In addition, this helps to ensure that requirements are agreed to by all stakeholders.

Second, actual testing will be performed to ensure that the requirements are met. The standard by which the application meets quality expectations will be based upon the requirements test matrix, use cases and test cases to ensure test case coverage of the requirements. This testing process will also help to ensure the utility of the application – i.e., the design’s functionality and “does the application do what the users need?”

Reliability

Reliability is both the consistency and repeatability of the application. A large part of testing an application involves validating its reliability in its functions, data, and system availability. To ensure reliability, the test approach will include positive and negative (break-it) functional tests. In addition, to ensure reliability throughout the iterative software development cycle, regression tests will be performed on all iterations of the application.
Project Quality Assurance

All project artifacts are posted to the EPM project SharePoint site, located at: {enter SharePoint site URL}
Fast Track Project Required Documents

	Project Artifacts
	Complete

	Project Proposal in EPM
	(

	Initiation Phase Checklist
	

	Project WBS
	

	Project Charter
	

	Business Requirements Document
	

	Project Plan Review Checklist
	

	Analysis Phase Checklist
	

	Design Review Checklist
	

	Conceptual IT Architecture Review Checklist
	

	Application Architecture Design
	

	System Architecture Design
	

	Code Review Checklist
	

	Implementation Plan Checklist
	

	QA Test Plan
	

	Test Planning Checklist
	

	Deployment Readiness Assessment Checklist
	

	User Acceptance Sign Off
	

	Service Level Agreement and Checklist
	

	Lessons Learned
	

	Close out Report
	

Test Methodology

Entrance Criteria

· All business requirements are documented and approved by the business users.

· All design specifications have been reviewed and approved.

· Unit testing has been completed by the development team, including vendors.

· All hardware needed for the test environment is available.

· The application delivered to the test environment is of reliable quality.

· Initial smoke test of the delivered functionality is approved by the testing team.

· Code changes made to the test site will go through a change control process.

Exit Criteria

· All test scenarios have been completed successfully.

· All issues prioritized and priority 1 issues resolved.
· All outstanding defects are documented in a test summary with a priority and severity status.

· Go/No-go meeting is held to determine acceptability of product.

Test Execution

The test execution phase is the process of running test cases against the software build to verify that the actual results meet the expected results. Defects discovered during the testing cycle shall be entered into the project SharePoint Team Site Defect list or Quality Center (offered by OIT). Once a defect is fixed by a developer, the fixed code shall be incorporated into the application and regression tested.

These following testing phases shall be completed (if applicable):

Unit Testing
Unit testing is performed by the report developers at U Services IT and OIT in their development environment. The developers know and will be testing the internal logical structure of each software component. A description of the unit testing should be provided to the project team.

Functional Testing
Functional testing focuses on the functional requirements of the software and is performed to confirm that the application operates accurately according to the documented specifications and requirements, and to ensure that interfaces to external systems are properly working.

Regression Testing
Regression testing shall be performed to verify that previously tested features and functions do not have any new defects introduced, while correcting other problems or adding and modifying other features.

Integration Testing

Integration testing is the phase of software testing in which individual software modules are combined and tested as a group. In its simplest form, two units that have already been tested are combined into a component and the interface between them is tested. In a realistic scenario, many units are combined into components, which are in turn aggregated into even larger parts of the program. The idea is to test combinations of pieces and eventually expand the process to test your modules with those of other groups. Eventually all the modules making up a process are tested together.

Interface Testing
This testing follows a transaction through all of the product processes that interact with it and tests the product in its entirety. Interface testing shall be performed to ensure that the product actually works in the way a typical user would interact with it.

Destructive Testing
Destructive testing focuses on the error detection and error prevention areas of the product. This testing is exercised in an attempt to anticipate conditions where a user may encounter errors. Destructive testing is less structured than other testing phases and is determined by individual testers.

User acceptance testing
User acceptance testing activities will be performed by the business users. The purpose of this testing will be to ensure the application meets the users’ expectations. This also includes focuses on usability and will include; appearance, consistency of controls, consistency of field naming, accuracy of drop down field information lists, spelling of all field name/data values, accuracy of default field values, tab sequence, and error/help messaging

Test Scenarios

Below are the high-level scenarios that will be tested. These scenarios are derived from the Requirements Matrix and Use Cases. From these, detailed test scripts will be created.
	ID – Number
	Test Scenario Description
	Test Script Reference
	Testing

Complete?

	ALL STATED REQUIREMENTS EXIST AND FUNCTION

	001
	{A test scenario is almost like a story "a user enters into the application from login window by entering valid user name and password. After entering he will click on module Payslip and clicks on latest payslip feature to view his latest payslip". Any test scenario will contain a specific goal.}
	
	

	002
	
	
	

	SECURITY

	003
	{Add description of requirements.}
	
	

	004
	
	
	

	DATA VALIDATION

	005
	{Add description of requirements.}
	
	

	006
	
	
	

	ENVIRONMENT

	007
	{Add description of requirements.}
	
	

	008
	
	
	

	INTERFACES

	009
	{Add description of requirements.}
	
	

	010
	
	
	

Test Script Development

Test script design is the central focus of a software quality assurance process. A test script is defined as a written specification describing how a single or group of business or system requirement(s) will be tested. The test script consists of a set of actions to be performed, data to be used, and the expected results of the test. The actual results of the test are recorded during test execution. Test scripts will also be updated as testing proceeds.

Test Scripts written for this project include the following:

· Test Script ID

· Test Cases verified
· Requirements verified

· Purpose of test
· Any dependencies and/or special set-up instructions required for performing the test

· Test description and steps

· Expected results

Defect Reporting

Issues/defects are tracked for resolution with the following guidelines:

· Issues will be reported based upon documented requirements.

· Issues will be tracked by the testing team, reported and entered into Quality Center.

· Issues will be fixed by the development team based on the priority/severity assigned by the test lead.

· All critical/priority 1 defects will be fixed before release to production.

See the Defect Tracking Process at the end of this document for detailed instructions on how to log and track defects in Quality Center.
Test Environment

Requirements

Client Server Technical Requirements:

· Mixed browsers supported (Internet Explorer, Firefox, Mozilla)

· Oracle Database

· Client Platform: PC and Macintosh

· Production server location:

Testing Platform

· Desktop PC – the application supports all A-Grade browsers for Windows and Mac operating systems , as defined by Yahoo!’s Graded Browser Support standards. http://developer.yahoo.com/yui/articles/gbs/ Windows 2000/IE6 may be excluded.

· Test server location:

User Acceptance Test Plan

Definition
The overall purpose of testing is to ensure the {name of application} application performs at an acceptable level for the customer. This section outlines the detailed plan for user acceptance testing of this application.

This test plan will be used to record the customer’s sign off of the documented scenarios. Detailed test scripts/cases have been developed and will be used to record the results of user testing. This document is a high level guide, and is not intended as a replacement for any specific user acceptance testing procedures that individual areas might have.

Testing Requirements
· Testing will take place in {insert location}. Some testers may choose to perform some testing from their regular workstations where it is possible. Test results must still be coordinated with others.

· UAT will take place beginning on {insert date}.

· Identified testing participants will receive instructions prior to the start of testing.

· Identified testing participants will perform the equivalent of their normal business function in the upgraded environment.

· Test scripts/cases and scenarios will be prepared prior to the start of UAT.

· Test participants will conduct the tests and document results.

· Defects will be entered into Test Director and tracked by the Test Lead.

Testers/Participants
Testing participants should include representatives from all areas involved in the application. There are benefits to including representatives from across all areas to validate the systems functions before the upgrade goes live in production.

The best candidates for UAT are:

· Staff directly impacted by the upcoming system and business process changes.

· Frequent users of the application and functions planned in test scripts/cases.

· Individuals with a sound understanding of business processes in the areas they represent.

· Individuals with the necessary time to commit to this endeavor.

· Willing to experiment (to try various methods to see what works and what doesn’t work).

· Patient and have a tolerance for ambiguity.

	Tester Name
	Department/Area Representing
	Area of Testing Focus

	
	
	

	
	
	

	
	
	

	
	
	

Testing Schedule
All upgraded functionality and test data will be migrated to the test environment prior to the start of user acceptance testing.

	Activity
	Lead Responsibility
	Date

	Identify and select testers for UAT
	
	

	Develop test scenarios and scripts/cases
	
	

	Validate participants availability for testing
	
	

	Review scenarios/scripts for accuracy, completeness and sequence (confirm test data is correct)
	
	

	Ensure UAT Lab desktops configured for testing
	
	

	UAT environment validation
	
	

	Testing by UAT participants
	
	

Assumptions and Risks

Assumptions

· The Business team has reviewed and accepted functionality identified in the business requirements and software requirements documents.

· Project change control process in place to manage requirements.

· Code walkthroughs/reviews will be completed by the development team.

· Unit testing will be completed by the development team prior to release to the test team.

· Testers will test what is documented in the requirements.

· The test team will have a separate test environment to perform testing.

· All changes to requirements will be communicated to the test team.

· Resources identified in this plan are available to test the application and resolve defects and address issues as they are raised by the test team.

· That the delivery of the product to production contains all setup, etc., that is necessary for optimum performance in the production site.

· Project sponsors, business and technical, will provide actionable guidance on defect prioritization and resolution.

· The UAT environment will be available and desktops will be available to perform testing.

Risks

· Scope creep (last minute addition of new requirements) impacts deadlines for development team and test team.

· Aggressive target date increases the risk of defects being migrated to production. If development timelines are not met, this will directly impact the testing timelines.

· Key resources have completing priorities making availability less than scheduled.

· Any downtime of the test system will significantly impact the testing cycle.

· Load testing is not being completed on a consistent basis; true performance of the application may not be known until release to production.

Go/No-go Meeting

Once the test team has completed the test cycle, a Go/ No-go meeting is scheduled as part of the implementation planning under launch readiness. This meeting is attended by the project manager, business team, test lead, technical lead, and any other stakeholders.

The test lead will provide a testing summary and list all outstanding unresolved defects and any associated risks with releasing the product to production. All outstanding issues are discussed at that time before a decision is made to push to production. A written sign-off form is signed by all team members as listed above. The list of outstanding issues is also attached to the sign-off form.

Roles and Responsibilities

	Resource Type
	Responsibilities
	Name

	Sponsor
	· Provides Go/No Go authorization that product is ready for release as part of implementation planning and launch process
· Prioritizes issues and defects, and manage technical resources
· Makes decisions on unresolved issues
	

	Project Manager
	· Provides guidance on the overall project

· Coordinates and develops project schedule

· Liaison with business to ensure participation and ownership

· Tracks all project activities and resources, ensuring project remains within scope

· Facilitates identifying and bringing closure to open issues

· Communicates project status
	

	Subject Matter Experts
	· Define business requirements and expected results for business acceptance

· Execute user acceptance testing
	

	Dev Team Lead
	· Design application architecture

· Create technical design

· Database Administrator
	

	Developers
	· Write application code

· Resolve defects

· Support testers
	

	Business Lead

	· Write business requirements, test plan and test cases

· Maintain requirements and defect reporting in Test Director

· Lead testing cycle
	

	QA Lead
	· Maintain project in Test Director

· Write test plan to include test scenarios and cases

· Facilitate testing

· Maintain and manage defects in Test Director
	

	Business Analyst

	· Write business requirements and build test scripts

· Maintain requirements in Test Director

· Lead testing cycle and coordinate test environment
	

	Testers
	· Perform user acceptance testing
	

Sign-off and Acknowledgement

I understand that by agreeing to participate in this testing through the execution of the testing plan, I approve of the activities defined and authorize my department to participate as documented for the successful implementation of this application in our department.

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Date: ___/___/___

Resource Name

Title or Responsibility

Test Director – Defect Tracking Process
	Summary:
	Screen name and short description about the defect being reported, usually providing key words with which to identify and/or search for the defect.

	Detected By:
	Auto populates with the User ID of person logged in.

	Detected on Date:
	Auto populates with current date.

	Severity:
	Describes the degree of impact that a defect has on the operation of the application.

	Assigned To:
	Individual being assigned the defect for fixing.

	Detected in Build:
	Build ID in which the defect was found. Build ID is an identifier for the code release, assigned by Web Development.

	Fixed in Build:
	Build ID in which the defect is fixed. Build ID is an identifier for the code release, assigned by Web Development.

	Priority:
	This field describes the impact the defect has on the work in progress and the importance and order in which a bug should be fixed.

	Status:
	Indicates the existing state of a defect, auto populates with a default of “New”

	Description:
	Enter description of defect

Add individual steps to reproduce. Include all steps and screens that were accessed.

Enter exact words of the error message.

	Email Defect:
	After entering defect, right-click on it and select email to send to assigned developer.

	

	
Defect resolution process:
	When the defect is opened, it is assigned to the appropriate person, status is changed to “Assigned”.

Once the defect is fixed:

1. The developer to whom the defect is assigned will update the defect comments to document the fix that was made. User ID and Date is automatically added to the defect by clicking on “Add Comment”.

2. The developer to whom the defect is assigned will change the status to “Fixed”, and will change the “Assigned To” field to the tester or defect manager.

3. The tester will retest the submitted defect.

4. If defect passes the retest, the tester or defect manager will change Status to “Closed”.

5. If the defect is not fixed, the tester will change the Status to “Assigned” and enter the UserID of the developer in the Assigned To field.

6. Once the defect has been verified as fixed, the project manager (or defect manager) will update the status to “Closed”.

	

	DEFINITIONS FOR DEFECT PRIORITY AND SEVERITY

	PRIORITY: This field describes the impact the defect has on the work in progress and the importance and order in which a bug should be fixed. This field is utilized by the developers and test engineers to prioritize work effort on the defect resolution.

	1 – Urgent Blocks Work
	Further development and/or testing cannot occur until the defect has been resolved.

	2 – Resolve ASAP
	The defect must be resolved as soon as possible because it is impairing development and/or testing activities.

	3 – Normal Queue
	The defect should be resolved in the normal prioritization and completion of defect resolution.

	4 – Low Priority
	The defect is an annoyance and should be resolved, but it can wait until after more serious defects have been fixed.

	5 – Trivial
	The defect has little or no impact to development and/or testing work.

	

	SEVERITY: This field describes the degree of impact that a defect has on the operation of the application.

	1 – Critical
	Critical loss of function. The defect results in system crashes, the failure of a key subsystem or module, a corruption or loss of data, or a severe memory leak.

	2 – Major
	Major loss of function. The defect results in a failure of the system, subsystem, or module, but the defect does not result in the corruption or loss of significant data.

	3 – Moderate
	Moderate loss of function. The defect does not result in a failure of the system, subsystem, or module, but the defect may cause the system to display data incorrectly, incompletely, or inconsistently.

	4 – Minor
	Minor loss of function, or another problem where a workaround is present. There are no data integrity issues.

	5 – Usability
	The defect is related to the system usability, is the result of non-conformance to a standard, or is related to the aesthetics of the system. There is no loss of system function.

	6 – Enhancement
	The defect is a request for an enhancement, i.e. it is not within the scope of the current project effort.

[image: image1.png][image: image2.jpg]