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Abstract

An algorithm for the pair-wise coarse registration of three-dimensional (3D) point sets sampled from piecewise smooth surfaces is presented.

The algorithm is unsupervised and robust and can handle both clean and noisy data sets with outliers.

The approach is based on a representation of the two data sets by sparse local features, invariant to rigid transformations, corresponding to the absolute maxima of the mean curvature field.

The feature parameters are differential invariants extracted by means of  a robust statistic approach.

First the normal vector field of the data sets is evaluated  by a two-step process to remove outliers and to refine the normal estimation near sharp features.

Then the normal field is used to robustly estimate the local curvature tensor and the points of maxima of the mean curvature field. These maxima represent the feature points of the data sets, and are characterized by signature vectors of invariant parameters. 

The signature vectors are build on relative distance, principal curvatures and projections of normals and principal directions.

The estimation of the best rigid transformation which aligns the two 3D data sets is obtained by the matching of pairs of triplets of feature points, one triplet per each data set.

To reduce the memory requirements and speed up the match, triplet matching is serialized into the sequential matching of its three elementary structures, the segments, made by pairs of feature points.

Segment matching is performed in a multidimensional signature space. Triplet matches allow the estimation of the roto-translation which align the two data sets.

The effectiveness of the proposed registration algorithm is evaluated on synthetic and real 3D data sets and the preliminary results are given.
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Introduction

Registration is the process which identifies the transformation that best aligns multiple partial representations of the same shape, when they are given in arbitrary initial positions.

Registration is an instance of partial matching, a fundamental problem in computer vision  and shape modeling.

In the context of the 3D shape acquisition and modeling pipeline [37], recent advances  in scanning technology have lead to the production of huge amount of 3D data in the form of   multiple partial scans.

The production of meaningful 3D model requires as intermediate step the registration of the scans into a common coordinate frame [14], possibly by means of an automatic (unsupervised) procedure.

The global registration of  multiple scans is usually performed as a sequence of pair-wise registrations.

Common approaches to registration are voting methods and matching of local features.

The matching approaches cast the pairwise registration problem in the correspondence problem, where  the sought solution is the correspondence map between subset of features  of the two scans.

Given the correspondences, the rigid transformation that best aligns the two set of features and hence  the scans can be computed.

To reduce the prohibitive computational effort of an exhaustive search, geometric descriptors are associated with 3D feature points. Some metric on the descriptors is defined, and only compatible point pairs are considered as potential matches.

Many geometrical descriptors have been proposed (spin images, local surface signatures in scale-space,  extremal points based on differential geometric invariants, or principal curvatures evaluated by integral invariants. An important point to be considered in the registration issue is the quality of the data.

Noise and outlier easily break-down registration methods that normally perform well on "clean" data sets. 

The algorithm we propose aims at the registration of noisy data sets with outliers, and it is based on the matching of local descriptors.

Contributions

 The main contributions to the problem of pair-wise registration of the proposed approach are as follows:

· The approach is robust, that is it is able to deal with a significant amount of noise and outliers in the data sets.

· The approach take advantage of a simple representation of the data sets based on both sparse local features (points of maxima of curvature) and global ones (inter-point distances) equipped by differential geometric invariants robustly evaluated.

· The estimation of the differential geometric invariants is relative robust to non-uniformly distributed samples, outliers, noise, and discontinuities in the data near the borders and junctions of multiple smooth patches.

· The registration is evaluated by the match of triplets in a sequential process which reduces memory occupancy and time requirements.

2. BACKGROUND AND RELATED WORK

2.1  Point set  registration

The registration of  multiple set of 3D data, or simply  scans, has log been studied and is a central problem for many application of shape modeling (See [14, 38, 39]  for some recent reviews).

The global registration of  multiple scans [42, 9,11] is usually break-down into a sequence of pair-wise registrations [13]. A further distinction is when an initial guess transformation has to be find (coarse registration) or is given (fine registration). In this last case a standard approach is ICP [40].

Common approaches to coarse registration fall in two classes: voting or hashing methods, and matching of local descriptors. The voting approaches [41] takes advantage of the low dimensionality of the transformation by a procedure which assigns a vote to the transform associated to a matched pair of triplets of points in each of the two scans. The transform with the highest score is chosen as  the optimal transform. The search for the optimal registering transform can be speed up by RANSAC  [27] based approaches [10].

The matching approaches cast the pairwise registration problem in the more general correspondence problem.

A solution to the correspondence problem is a correspondence map from a subset of points  of the first scan onto the corresponding points of the other.

Given the correspondences, the rigid transformation that best align the two scans, while minimizing the distances between corresponding pairs of points can be computed.

To reduce the prohibitive computational effort of an exhaustive search, geometric local descriptors are associated with 3D points. Some metric on the descriptors is defined, and only compatible point pairs are considered as potential matches.

Many geometrical descriptors have been proposed, both high-dimensional like spin images [46,12,11],  frequency domain analysis [48], local surface signatures in a scale-space representation [1], and low-dimensional ones, like extremal points based on differential geometric invariants [47],

principal curvatures evaluated by integral invariants [43, 44, 45].

2.2  Normal and principal curvatures estimation methods

The estimation of normals and principal curvatures is central  in Computer Vision and Graphics.

Different methods have been developed suited to deals with mesh or with point based representations of the range data.

In mesh based representation [15] two subclass of methods are those based on the local curves and surfaces fitting and those based on the discrete curvature tensor.

Local curve fitting is based on the estimation of the normal curvature in the direction of edges leaving a vertex [16], while surface fitting methods fit low-order analytic functions to points locally and then compute curvatures from the surface parameters [17]. The approaches are similar differing in the type of fitted model.

Discrete curvature tensor methods  estimate the curvature tensor by using normal curvatures in the direction of [19] or triangles [4] around a vertex, or are based on normal cycle theory [20].

Point set based representation, even if more flexible than mesh based, lacks of connectivity and topological information respect to mesh based one. This makes difficult to define the set of neighbor of a point and hence the geometric differential invariant estimation is harder.

Two common curvature and normal estimation methods for point set representation are statistic methods and MLS methods.

Statistic methods [21,22,23], [7] are a class of methods which estimate a limited amount of information (normal, mean curvature) from statistical descriptors such as eigenvectors and eigenvalues of the sample covariance matrix, evaluated in a neighbor of the point where the geometric differential descriptors are to be estimated.

Moving Least-square (MLS) [25, 26] based methods compute derivatives of a local implicit surface reconstruction from the point set [24].

Statistic methods are simple and fast, but in general are suitable for estimating normal and mean curvature only, while MSL estimates a richer local description of the differential properties of the underlying surface.

Real data are generally non-uniformly sampled, can contain noise and outliers, discontinuities and sharp features at the conjunction of multiple smooth surfaces.

 All these methods work fine with "clean" data but lack of robustness when the former problems occur.

 Recently a global registration method [35] based on the persistence of feature points in the scale-space representation has been proposed to identify true features and discard outliers.

2.3  Robust methods

The lack of robustness of the former methods in presence of noise and outliers has drawn interest in developing estimation methods based on robust statistics.

Starting from RANSAC (RANdom Sample Consensus ) [27], many other robust estimators (LMedS, MINPRAN, MUSE, MDPE, [28,29,30], [2]) have been developed  ( See [2]  for a short review).

In [3] a robust moving least-squares technique for the reconstruction of piecewise smooth surfaces from point clouds is presented. The approach locally classify subsets of points to multiple smooth regions by a a forward search [31] approach.

In the context of surface reconstruction from noisy set of points with outliers, the MDPE (maximum power density estimation) estimator is applied to robust estimation of normals [6]. MDPE tries to satisfy two reasonable and contrasting criteria for a robust estimator [2]: maximize the number of inliers, and minimize inlier residuals.

In [5] a robust statistics approach to curvature tensor estimation on discretely sampled surfaces, namely polygon meshes and point clouds, is presented.  The algorithm rejects noise and structured outliers by a robust M-estimation  procedure and an Iteratively Reweighed Least Squares (IRLS) scheme.

Another class of methods make use perceptual principles in the tensor voting methodology [34] to infer curvatures  from sparse and noisy data by mean of voting fields.

Very recently [32] a robust method for extracting principal curvatures, sharp features and normal directions of piecewise smooth surfaces from its point cloud sampling is presented. The method is based on integral invariants and is supported by theoretical guarantees on the estimates.

3. ROBUST ESTIMATION OF NORMALS AND CURVATURES

3.1  Normal field estimation method

The estimation of the normal vectors associated to 3D point set data is a central problem and a critical step of many Computer Graphic applications (surface reconstruction, rendering, etc.).

Deterministic approaches [22] to normal estimation can be hindered by the presence of outlier and noise in the data. Even discontinuities as borders or junctions of multiple smooth surfaces can produce large errors or smoothing effects in estimates [50].

To cope with these problems recent approaches introduce robust statistics techniques in the context of surface denoising [51,52], surface reconstruction [6,3,33], curvature estimation [5,32],

In contrast to non-robust approaches, which are more efficient but better suited for noise and outlier free data, we aim to estimate normal vectors by a robust estimator which allows us to reconstruct normals even close to discontinuities at the junction of multiple smooth regions.

This is a necessary requirement to provide reliable normals to the next processing step where the curvature tensor is evaluated.

The robust estimations of normals is realized by a two step process.

In the first estimation step we do not attempt to obtain accurate normal everywhere in the point sets for the following reason.

We assume that not only outliers, but also multiple instances of smooth surfaces can be present in the local support where normals are evaluated. Hence, as in [3], points belonging to multiple instances of smooth surfaces are considered as outlier.

According to [54], the probability P that a outlier-free set can be chosen from m  p-subsets of p points is relate to the fraction ε  of outliers by :
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Our assumption regarding outliers requires that the value of  ε  has to be increased by considering the expected number of local multiple surface instances.

It turns out that when outliers and multiple smooth surface are present in the data, to obtain a reasonable value P of success in finding a outlier-free set of p points in one step is impractical due to the required execution time of the search.

For this reason in this first step we accept to obtain some wrong normals near outliers and multiple surface junctions by applying the robust estimation approach of the Maximum Power Density Estimation in its quick version QMDPE [2].

 This estimator, according to experimental results [2,6], outperform other robust estimators with an higher breakdown point by satisfying two reasonable criteria for a robust estimator:

· (1)  data points close to the model (inliers) should be as many as possible

· (2)  the inlier residuals should be as small as possible

 These requirements are translated in the MDPE assumptions for the correct estimate the residuals of inliers should be as close to zero as possible, that is they should satisfy a zero mean unimodal distribution. At the same time the probability density of the data points on or near the fitted structure should be high.

Given a set of n data points {Xi} i=1・・n, is possible  to define a multivariate density estimator f of the point distribution and an objective function ψ whose maximization satisfies the two former requirements  (see [2] for details).

 The objective function ψ  is then defined :

[image: image5.emf]where the two factors are :

(1) the probability density f(Xc) of points associated to the mode or peak of high concentration in the signed residual space[image: image6.emf]
(2) a function of the the value of the peak                             in the signed residual space

We note that for high values of the objective function ψ the probability density function is related to the percentage of inliers and h determines the maximum acceptable absolute residual.

The mean shift search approach is applied with window size h  to find the peak value |Xc| in the signed residual space (See [2] and [53]).

3.2  Two step procedure

In the first step the MDPE procedure is repeated for every point in the data set as follows:

First step: evaluate normals and their reliability

1.   Chose a a search window radius h ( as in [6] we set h to twice the average of point set distances ) and a repetition count m 

2.
Chose a reference point p, a neighbor set of points Sp 

3.
Randomly choose three points in the neighbor of p, estimate the interpolating plane, and calculate the signed residuals of all points Sp 

4.
Calculate the value of the peak |Xc| in the signed residual space by Mean Shift algorithm and the probability density  f(Xc) of points associated to the peak 

5.
Evaluate the associated power density (Eq.2) 

6.
Repeat step(2) to step (5) m times 

7.
Fit a plane to the inliers related to the maximum power density evaluated in steps (2) to (5) and associate the normal vector and the maximum power density to the point 

8.
Repeat steps (2)-(7) until no more points in  Sp  remain to be processed 

We are aware that the estimates of the normals are reliable only where the associate value of maximum power density is high enough; this means that the point and its related normal has enough support from neighbors.

The second step of the normal estimation process is more expensive but it is performed only on the subset Snrp   of the set Sp made of  points with unreliable normals that have low values of the power density .

The remaining points l  are in the reliable set Srp ≡ {Sp ∩ Snrp}.

Snrp  is obtained from Sp  by an acceptance threshold Tresh on the maximum power density values of the

points. Tresh  selects unreliable normals from the global set of normals. The acceptance threshold Tresh is globally defined for the entire model and experimentally determined from the maximum acceptable noise level present in the data sets.

As noted before this threshold is related to percentage of inliers and h determines the maximum acceptable absolute residual. Hence, in principle, Tresh  could be defined directly from these parameters.

The rationale behind the second step is to search  for neighbors of a point p with unreliable normal which have reliable normals. If their number is high enough, then they are classified as belonging to one or more local smooth surfaces. A check is done on all the points with unreliable normals in the neighbors of p (included) that can be classified analogously, hence correcting their normals accordingly. In this way the correct normals propagates from the reference point as far as it is possible in the neighbors. 

This second step is repeated for every point in the subset  Snrp as follows:

Second step: refine unreliable normals 

1.
Chose a percentage value perc for points of maximum power density values in the  set of points Sp . This percentage value depends on the expected number of multiple smooth surfaces present in neighbor set window ( we assume a maximum of 4 surfaces) and on the expected outlier percentage. Choose the local neighbor set window radius w ( we set w to four times the average inter-point distances in the set Snrp), the minimum number of points mn  it can contains and the maximum tolerated residual MaxRes.

2.
Chose a reference point p in the set of points  Snrp  and the  neighbor set of points  Slp  in the local neighbor window centered in p

3.
Search in the neighbor set the points q ∈ Sq ≡ {Slp ∩ Srp}  with high power density values

4.
If the percentage of points q (compared to the total number of points in Slp ) is less then perc then repeat step (2)( not enough reliable points  belong to some surface).

5.
else start the Local classification procedure procedure with  p, Slp, Snrp , and Srp  as parameters to estimate the number of surfaces and to classify neighbor points 

6. Repeat steps (2)-(4) until no more points in Snrp remain to be processed

Local classification procedure

1.
Choose a repetition count m , the local acceptance threshold LocTresh  ( a fraction of Tresh because we could have multiple surfaces in  the reliable point set)  and the minimum number mnrp  of reliable  points q ∈ {Slp ∩ Srp} 

2.
Randomly choose three reliable points q in  Sq ≡ {Slp ∩Srp}, estimate the interpolating plane, and calculate the signed residuals of all points in Sq. 

3.
Evaluate the associated power density (2) 

4.
Repeat step(2) to step (4) m times

5.
Fit a plane to the inliers iq ∈ Scorrlr  ( reliable points which are inliers) related to the maximum power density evaluated in steps (2) to (4) ( here a surface is estimated) 

6.
Fit the same plane to unreliable points nr ≡ {Slp ∩ Snrp} , and select from these the inliers inr ∈ Scorrlnr  (unreliable points which are inliers) and then associate to them the normal vector of the plane

7.
Update the global sets  Snrp  and Srp  with the classified points inr 

8.
Update the local sets Sq  and Slp removing points iq and inr respectively

9.
Check  the number of remaining reliable points q; 


if  it is greater than the minimum mnrp repeat steps (2)-(8) (if less we have not enough reliable points to estimate a surfaces ) else classify the remaining unreliable points in the neighbor as outliers and exit. 

3.3  Curvature tensor estimation

The reliable normals estimated in the preceding subsection are used as known data to estimate the curvature tensor on every point the data sets. The curvature tensor is expressed in terms of the shape operator [55] based on the derivative of the normal vector field  in a local neighbor around the estimation reference point p:


[image: image7.emf]where  
                      and                           

In the former equation the curvature tensor expressed in the first matrix is estimated from the known vector quantities       [image: image8.emf]projected on the vectors [image: image9.png]


 of a local planar parametrization of the surface.

Two different point pairs produce a solution for the unknown parameters of curvature tensor matrix.  

The curvature tensor estimation algorithm starts collecting a minimum number of pairs of normal variations and point distances from a neighbor of the point of interest p, then evaluates an estimate of the curvature tensor by solving the system of equation of the curvature tensor and then evaluate the goodness of fit by the QMDPE approach. To evaluate the residuals we use a second order surface approximation parameterized by ( [image: image10.png]


      ) obtained from the curvature tensor diagonalization. 

As for normal estimation the procedure is repeated for a fixed number of times and the fit which give the maximum power density is chosen. The estimation is then refined by fitting with the contribution of all inliers.

 Curvature tensor estimation method

1.
Chose a a search window radius h and a repetition count m 

2.
Chose a reference point p, a neighbor set of points Slp  

3.
Randomly choose two other points in the neighbor of p, evaluate normal variations and sample distances of the pairs 

4.
Solve the curvature tensor equation, estimate from its elements the second order surface approximation and evaluate the residuals of the other neighbor points 

5.
Evaluate the associated power density (2) 

6.
Repeat step(2) to step (5) m times 

7.
Choose the tensor estimate related to the maximum power density evaluated in steps (2) to (6) 

8.
Evaluate a better tensor estimate by least square fitting all the inliers 

9. Repeat steps (2)-(8) until no more points in Sp  remain to be processed

4. FEATURE  POINT  DETECTION   AND  SIGNATURE  GENERATION

4.1  Feature point detection

The information on curvature tensor is used to evaluate the mean curvature associated to every reliable data point. Local maxima of the mean curvature are used as feature points of the data set pair to be matched. These maxima are searched for as local maxima in a moving window. The size of the window is set according to the peak of the mean curvature histogram evaluated on the data set.

4.2  Signature generation

The feature points of the two data set to be registered are characterized by attributes like normals and directions and values of  principal curvatures, and are collected in two sets of sparse feature points.

The best rigid transformation which aligns the two 3D data sets is estimated by the matching of pairs of triplets of characterized feature points, one triplet (See Fig.1 ) per each data set.

[image: image11.emf]
Fig. 1 A triplet of feature points with estimated attributes

To reduce the memory requirements and speed up the match the triplet is decomposed in three more elementary structures we call segments with attributes (See Fig.2), and the matching is serialized into a sequential matching of these elementary structures (as explained in the next subsection). The segments are pairs of feature points equipped with their relative distance and attributes.

[image: image12.emf]
Fig. 2 A segment of feature points with estimated attributes

[image: image13.emf]
A signature vector  [image: image14.emf][image: image15.emf]of 12 elements is[image: image16.emf] associated to every segment. The signature elements are made by invariants such as relative point distance lij of the point pairs Pi, Pj, by the projections of the two normals            ,  and the two principal   directions         ,    associated to the greater (r1i) of curvature values (r1i, r1j ) along the unit vector          
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Further signature elements are the projections of the two normals              , on the plane perpendicular to 

[image: image18.jpg]


t      he rotation angle θij  between these last projections and finally by the two pairs of curvature values, r1i, r2i,

r1j , r2j.  Note that the unit vectors  [image: image19.png]


               form an orthogonal basis, and hence some projection contains redundant information.

5.  TRIPLET MATCHING

The estimation of the correct roto-translation which aligns the two 3D data sets (A, B) is obtained by finding the best match between pairs of triplets made by points from the (N,M) feature points of the data sets.

In a naif attempt to the triplet matching problem, we should try all the possible combinations of three points

chosen from the N, generating a number of triplets of the order O(N3) and a number of comparisons of

the order O(N6), which is obviously impractical. 

The signatures can reduce the complexity of the match by representing the O(N3) triplets of a data set A as points in a 12-dimensional signature space organized in a k-d tree. Then the triplets of the other data set B can be represented in the same signature space. 

By looking for proximity relations between points associated to triplets of different data sets, possible matches can be found.

 In a previous work we attempt to follow this approach by a RANSAC based approach to reduce the

complexity [56]. Here we propose a simplification of the triplet matching process in the spirit of a prediction-verification paradigm, by a decomposition of the triplet match in a sequence of three matches of segment, discarding early incorrect matching hypothesis along the sequence of matches (See Fig.2). 

We still use a a 12-dimensional signature space and a k-d tree structure to manage proximity relations, but now the number of segments generated by N feature points is of the order of O(N2), hence the the memory requirements are reduced by one order.

Further we address the O(N2) signature points by a table of indices i, j. We supplement the information in

the signature space with the indices i, j of the points of the set A generating the signature for a backward

referencing purpose.

 The match process proceed as for triplet, looking for possible matches in the signature space based on proximity relations controlled by a global threshold MaxDist of maximum allowable distance between compatible point matches. This threshold is defined experimentally. 

When a match is found between a pair of segments PAi, PAj  and PBl, Pbm,  a second match between the pair PBl, PBn having a common point PBl  with the former is seek in the signature space. A compatible pair PAi, PAk   in A is found only if one of the feature point indices associated to the matched signature point of A (backward reference) is one of the feature point indices i, j of the former match. 

 In case it matches, we simplify the last step of the sequence by verifying if the distances |PAj −PAk|  and 

|PBm − Pbn| are compatible.

5.1  Roto-translation estimation

Given a triplet match, we can estimate the associated roto-translation [8] and apply it to the entire set of feature points. If the percentage of transformed feature points of B which are close to feature points of A under a specified distance threshold (inliers) is greater than a predefined level of acceptance, we can refine the roto-translation by re-fitting the inliers.

6. RESULTS

A preliminary version of the registration algorithm has been implemented in a high level language (Matlab ©) and tested on both synthetic data sets corrupted by adding noise and outliers and on real data sets. A last data set acquired by our structured light acquisition system has been processed also. At moment the non-optimized implementation does not allow a direct comparison on execution times with other implementations based on  different approaches; this is sought as a future development.

   The first example is a synthetic data set (Fig.3)  where noise and some outlier have been added to the original model on the left. The corrupted model (center) is processed by the algorithm and the robust estimated normals has produced a clean surface reconstruction shown on the right.

   The second example is the Bunny data set, where noise and some outlier have been added to two scans (Fig. 4). The mean curvature field and the feature points are shown in the upper part of Fig.4. In the lower are shown the registered scan pair.

     A third example is the Thinker data set (Fig. 5), acquired by our structured light acquisition system.

 The scan sets are noisy, with some ghosts points (outliers) present near sharp features. The mean curvature field of the scans is shown on the left and central part of the image. On the right is shown the registered scan pair, where outliers have been removed.

The experimental results demonstrate a relatively accurate registration even for this real data set. A further processing by ICP did not produce substantial improvements.
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Fig. 3    The synthetic model: original (left), corrupted by noise and outliers (center), reconstructed (right).


Fig. 4 Bunny scan pair: Mean curvatures, feature points and registered scans (down).


Fig. 5 The Thinker.


Fig. 6  Two scans of the Thinker: Mean curvatures, feature points and registered scans (right).

7  CONCLUSIONS

This paper describes a new approach to automatic coarse pair-wise registration of noisy point sets commonly generated by laser scanners, structured light systems or stereo. The approach consists of two steps; the first one is the robust detection of feature points (local curvature maxima) present in the data of the two scans. The second one is the feature point characterization by signatures vectors of geometric invariant and their match. Main contributions of the approach are the following:

•
the design of a robust estimation algorithm for normal and curvatures, able to deal with noise and outliers, with non-uniform distributed samples and with the presence of multiple surfaces and sharp features. 

•
the simplification of the match of triplets of of feature points in a sequential process which reduce memory occupancy and time requirements. 

The results show the effectiveness of the proposed algorithm for the registration of real data but some improvements remain to be made concerning the optimization and threshold control.. In perspective, we aim to implement the algorithm in a more efficient language, to compare the performance with other approaches. Further we want to investigate a multi-scale approach to feature detection.
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