Database Design

CmpE 226 Problem Statement Requirements Fall 2006
1. Design a database with at least 10-12 constraint tables. The constraint tables should use the full power of linear constraints. (For example, the equality constraint x =1 does not use the full power of linear constraints. So don ’t use only equality constraints in your database.) The tables should contain a reasonable number of constraint tuples, not too few and not too many.

2. Each team must select a unique project and write a description of one page to two or more pages that contain the problem description, brief description of the entities, and their attributes. Submit your project description electronically for approval in a week – Due date is Thursday, September 21, 2006 or Sooner. Submission format is TeamName-tpd.doc. If your team name is Alpha then your project description file is Alpha-tpd.doc.

Problem Statement Requirements

Due Date: Thursday, September 21, 2006 or Sooner Hardcopies @ the BEGINNING of class & electronic submissions by midnight of the same due date. Check submission Guidelines.

Hand in the following (one per group) for team projects. When submitting a problem description, you should use the following structure as a guide.
· Abstract
This concise presentation of your problem will be the basis for the participants to choose the problem they want to work on.
· Description of a domain
This description can be accompanied by pictures, images, text or whatever. The purpose of this description is to explain the context in which the problem is placed. The text should define any terminology and should be understandable by laymen. All abbreviations must be explained, if possible in a glossary.
· Block diagrams (Optional)
A block diagram of the problem domain, or any other type of diagram which may serve as a basis for the analysis and design, should be included here.
· Description of the program that is wanted
This should include the goals of the program and the required functions. It should state what the program should achieve without enforcing any solutions.
· Detailed requirements
Each team must create a more detailed 2-3 page of detailed requirements. Because of time limitations these should of course be restricted. An indication of performance and capacity requirements should be given.
· Relation or entities’ names and attributes: provide a detail description of each entity and its own attributes.
· Use cases and User Context (Optional)
Each team must provide description of what your users do, how their need for the system arose, and what they would like to see to solve their problem. Use your imagination and put yourself in the user’s context. Describe all the use case in your system or meaningful handful of use cases. Use cases are well suited to provide hints for both the analysis and design processes, as design teams tend to work on them first. Description of the work context for the user/customer's point-of-view: why a system is needed, and what the system will do for them.

· Interfaces (Optional)
Descriptions of interfaces to other systems. This is of course optional when no interfaces to other systems are necessary.
· References for further study
These are references to articles, other similar systems, or implementations.

Projects’ Ideas:

Here are some ideas and see a list of problem statements:
(a) Temperature and blood pressure recordings of patients in a hospital. Approximate the temperature and blood pressure curves as piecewise linear functions of time.

(b) The DOW and NASDA stock indices and other key market indices for several decades. Approximate the indices as piecewise linear functions of time. (That is, we don’t need 3650 pieces of data for each index. Use at most 100 pieces in a piecewise linear function to approximate them.) Use database queries to try to find some interesting relationships among the indices. For example, one index may tend to follow the average of some other indices with a certain time delay.)

(c) A campus map. Include the area of the buildings. Also show how the buildings changed over time, i.e., when they were built or expanded in space.

(d) A parking lot. Show the parking lot and how cars are entering and leaving the parking lot.

(e) A passenger airplane flight scheduler. Include reservations, capacity check for the airplanes.

(f) A freight train scheduler. Include stops of the train in cities and amount of carried items loaded on and o .at each stop. Include needed amount of items (use several different items) at each city. Find a shipment schedule that meets all needs.

(g) Find a product category that you are interested in (besides crops). Express a linear programming problem based on the basic resources that each product needs and the total amount of resources available. Beside the basic linear programming problem include specific details and complications. For example, 1000 units of resources are available but not more than 500 must be used for product type A. Find other restrictions and variations of the basic linear programming problem.

(h) Check Sample Problem Statements on the course Web Page.

Sample Problem Statements or Requirements: Check OOPSLA’s DesignFests
http://designfest.acm.org/Problems/Welcome.htm &
Please remember that your team’s problem statement will be subject to submission to OOPSLA ’06 DesignFest. Check:

http://www.oopsla.org/2006/designFest.html

The following properties should be considered when creating your problem statement:

1. Uniqueness: new and no duplicates

2. Originality: Creative effort invested by an author into the requirements that gives them a new quality or character. The problem statement contains indicators for freshness of aspect, design, or style.

3. Completeness: The state of being complete.

4. Readability: The ease in which any party can read and understand the problem statement.

5. Creativity: Artistic or intellectual inventiveness. We can define creativity as innovation which refers to the introduction of novel things.

Grading Criteria at the end of the semester as part of the final project

	Item
	% of Grade

	Illustrations
	20%

	Completeness of requirements
	35%

	Organization
	15%

	Creativity
	30%

1. Illustrations: This refers to any illustrated models, such as pictures, images, diagrams, that provide clear definition of the problem domain and/or system architecture. Properties: Readability and Creativity.
2. Completeness of requirements: This refers to how completely the group has described the user context and requirements. Make sure all the possible scenarios or use cases are covered, including error recovery. For example, a requirement document for an e-mail system that leaves out the ability to reply to mail messages would be downgraded (of course, it may be a requirement that the user cannot reply to mail -- but that needs to be part of the requirement). Properties: Completeness.
3. Organization: This refers to how well-organized and readable the requirements document is. If related requirements are strewn throughout the document, or the document is written poorly, it will be downgraded. Good organization that clarifies the requirements is desired. Properties: Readability.
4. Creativity: Creative requirements will be rewarded. Try to come up with some good ideas that fit the user's context. Properties: Uniqueness, Originality, and Creativity.
