[image: image1.png]

AWS Service Catalog

Administrator Guide

[image: image2.png]

[image: image3.jpg]

AWS Service Catalog Administrator Guide

[image: image4.png]

AWS Service Catalog: Administrator Guide

Copyright © 2019 Amazon Web Services, Inc. and/or its aﬃliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be aﬃliated with, connected to, or sponsored by Amazon.

[image: image5.png]

AWS Service Catalog Administrator Guide

[image: image6.png]

Table of Contents

What Is AWS Service Catalog?
1
Overview
1
Users
1
Products
2
Provisioned Products
2
Portfolios
2
Versioning
2
Permissions
2
Constraints
3
Initial Administrator Workflow
3
Initial End User Workflow
3
Limits
4
Setting Up
6
Sign Up for Amazon Web Services
6
Grant Permissions to Administrators and End Users
6
Grant Permissions to Administrators
6
Grant Permissions to End Users
8
Getting Started
10
Step 1: Download the Template
10
Template Download
10
Template Overview
10
Step 2: Create a Key Pair
13
Step 3: Create a Portfolio
13
Step 4: Create a Product
14
Step 5: Add a Template Constraint
14
Step 6: Add a Launch Constraint
15
Step 7: Grant End Users Access to the Portfolio
16
Step 8: Test the End User Experience
17
Authentication and Access Control
18
Predefined AWS Managed Policies
18
Deprecated Policies
19
Console Access for End Users
19
Product Access for End Users
20
Example Policies
20
Example: Full Admin Access to Provisioned Products
20
Example: End-user Access to Provisioned Products
21
Example: Partial Admin Access to Provisioned Products
22
Managing Catalogs
24
Managing Portfolios
24
Creating, Viewing, and Deleting Portfolios
24
Viewing Portfolio Details
25
Creating and Deleting Portfolios
25
Adding Products
25
Adding Constraints
27
Granting Access to Users
27
Managing Products
28
Viewing the Products Page
28
Creating Products
29
Adding Products to Portfolios
29
Updating Products
30
Deleting Products
30
Using Constraints
31
Launch Constraints
31
Notification Constraints
33
[image: image7.png]

iii

AWS Service Catalog Administrator Guide

[image: image8.png]

Resource Update Constraints
34
Stack Set Constraints
34
Template Constraints
35
Using Self-Service Actions
43
Prerequisites
43
Step 1: Configure End-User Permissions
44
Step 2: Create a Self-Service Action
45
Step 3: Associate the Self-Service Action with a Product Version
45
Step 4: Test the End-User Experience
45
Adding AWS Marketplace Products to Your Portfolio
46
Managing AWS Marketplace Products Using AWS Service Catalog
46
Managing and Adding AWS Marketplace Products Manually
46
Portfolio Sharing
51
Relationship Between Shared and Imported Portfolios
51
Sharing a Portfolio
53
Importing a Portfolio
53
Using AWS CloudFormation StackSets
53
Stack sets vs. stack instances
53
Stack set constraints
54
Managing Provisioned Products
55
Managing All Provisioned Products as Administrator
55
Tutorial: Identifying User Resource Allocation
55
TagOption Library
59
Launching a Product with TagOptions
60
Example 1: A Unique TagOption Key
60
Example 2: A Set of TagOptions with the Same Key on a Portfolio
60
Example 3: A Set of TagOptions with the Same Key on Both the Portfolio and a Product in that
Portfolio
61
Example 4: Multiple TagOptions with the Same Key and Conflicting Values
62
Managing TagOptions
62
Monitoring
64
Monitoring Tools
64
Automated Tools
64
CloudWatch Metrics
64
Enabling CloudWatch Metrics
65
Available Metrics and Dimensions
65
Viewing AWS Service Catalog Metrics
66
Product and Service Integrations
67
Connector for ServiceNow
67
Background
67
Getting Started
68
Release Notes
68
Baseline Permissions
69
Configure AWS Service Catalog
73
Creating StackSet Constraints
54
Configure ServiceNow
74
Validate Configurations
79
ServiceNow Additional Administrator Features
80
Upgrade Instructions
81
Document History
85
[image: image9.png]

iv

AWS Service Catalog Administrator Guide

Overview

[image: image10.png]

What Is AWS Service Catalog?

AWS Service Catalog enables organizations to create and manage catalogs of IT services that are approved for use on AWS. These IT services can include everything from virtual machine images, servers, software, and databases to complete multi-tier application architectures. AWS Service Catalog allows organizations to centrally manage commonly deployed IT services, and helps organizations achieve consistent governance and meet compliance requirements. End users can quickly deploy only the approved IT services they need, following the constraints set by your organization.

AWS Service Catalog provides the following benefits:

· Standardization
Administer and manage approved assets by restricting where the product can be launched, the type of instance that can be used, and many other configuration options. The result is a standardized landscape for product provisioning for your entire organization.

· Self-service discovery and launch
Users browse listings of products (services or applications) that they have access to, locate the product that they want to use, and launch it all on their own as a provisioned product.

· Fine-grain access control
Administrators assemble portfolios of products from their catalog, add constraints and resource tags to be used at provisioning, and then grant access to the portfolio through AWS Identity and Access Management (IAM) users and groups.

· Extensibility and version control
Administrators can add a product to any number of portfolios and restrict it without creating another copy. Updating the product to a new version propagates the update to all products in every portfolio that references it.

For more information, see the AWS Service Catalog detail page.

The AWS Service Catalog API provides programmatic control over all end-user actions as an alternative to using the AWS Management Console. For more information, see AWS Service Catalog Developer Guide.

Overview of AWS Service Catalog

As you get started with AWS Service Catalog, you'll benefit from understanding its components and the initial workflows for administrators and end users.

Users

AWS Service Catalog supports the following types of users:

· Catalog administrators (administrators) – Manage a catalog of products (applications and services), organizing them into portfolios and granting access to end users. Catalog administrators prepare AWS

[image: image11.png]

1

AWS Service Catalog Administrator Guide

Products

[image: image12.png]

CloudFormation templates, configure constraints, and manage IAM roles that are assigned to products to provide for advanced resource management.

· End users – Receive AWS credentials from their IT department or manager and use the AWS Management Console to launch products to which they have been granted access. Sometimes referred to as simply users, end users may be granted diﬀerent permissions depending on your operational requirements. For example, a user may have the maximum permission level (to launch and manage all of the resources required by the products they use) or only permission to use particular service features.

Products

A product is an IT service that you want to make available for deployment on AWS. A product consists of one or more AWS resources, such as EC2 instances, storage volumes, databases, monitoring configurations, and networking components, or packaged AWS Marketplace products. A product can be a single compute instance running AWS Linux, a fully configured multi-tier web application running in its own environment, or anything in between. You create a product by importing an AWS CloudFormation template. AWS CloudFormation templates define the AWS resources required for the product, the relationships between resources, and the parameters that end users can plug in when they launch the product to configure security groups, create key pairs, and perform other customizations.

Provisioned Products

AWS CloudFormation stacks make it easier to manage the lifecycle of your product by enabling you to provision, tag, update, and terminate your product instance as a single unit. An AWS CloudFormation stack includes an AWS CloudFormation template, written in either JSON or YAML format, and its associated collection of resources. A provisioned product is a stack. When an end user launches a product, the instance of the product that is provisioned by AWS Service Catalog is a stack with the resources necessary to run the product. For more information, see AWS CloudFormation User Guide.

Portfolios

A portfolio is a collection of products, together with configuration information. Portfolios help manage who can use specific products and how they can use them. With AWS Service Catalog, you can create a customized portfolio for each type of user in your organization and selectively grant access to

the appropriate portfolio. When you add a new version of a product to a portfolio, that version is automatically available to all current users. You also can share your portfolios with other AWS accounts and allow the administrator of those accounts to distribute your portfolios with additional constraints, such as limiting which EC2 instances a user can create. Through the use of portfolios, permissions, sharing, and constraints, you can ensure that users are launching products that are configured properly for the organization’s needs and standards.

Versioning

AWS Service Catalog allows you to manage multiple versions of the products in your catalog. This allows you to add new versions of templates and associated resources based on software updates or configuration changes. When you create a new version of a product, the update is automatically distributed to all users who have access to the product, allowing the user to select which version of the product to use. Users can update running instances of the product to the new version quickly and easily.

Permissions

Granting a user access to a portfolio enables that user to browse the portfolio and launch the products in it. You apply AWS Identity and Access Management (IAM) permissions to control who can view and

[image: image13.png]

2

AWS Service Catalog Administrator Guide

Constraints

[image: image14.png]

modify your catalog. IAM permissions can be assigned to IAM users, groups, and roles. When a user launches a product that has an IAM role assigned to it, AWS Service Catalog uses the role to launch the product's cloud resources using AWS CloudFormation. By assigning an IAM role to each product, you can avoid giving users permissions to perform unapproved operations and enable them to provision resources using the catalog.

Constraints

Constraints control the ways that specific AWS resources can be deployed for a product. You can use them to apply limits to products for governance or cost control. There are diﬀerent types of AWS Service Catalog constraints: launch constraints, notification constraints, and template constraints.

With launch constraints, you specify a role for a product in a portfolio. This role is used to provision the resources at launch, so you can restrict user permissions without impacting users' ability to provision products from the catalog.

Notification constraints enable you to get notifications about stack events using an Amazon SNS topic.

Template constraints restrict the configuration parameters that are available for the user when launching the product (for example, EC2 instance types or IP address ranges). With template constraints, you reuse generic AWS CloudFormation templates for products and apply restrictions to the templates on a per-product or per-portfolio basis.

Initial Administrator Workflow

The following diagram shows the initial workflow for an administrator when creating a catalog.

[image: image15.jpg]Administrator

—_—

Author template
including
parameters

Create portfolio

Add constraints and
grant access

0.
products

—

Assign products

Add tags to portfolios
and products

NG

(][

ProductY ProductZ

AWS Service Catalog

PortfolioA

End users
Constraints
+ Launch: adopted role

+ Template: parameter
Resource tags j

Initial End User Workflow

Using the state of the administrator workflow as a starting point, the following diagram shows the initial workflow for an end user. This example shows the end user product view and provisioning tasks, on the right, as well as the administrator's tasks, on the left. The tasks are numbered in order.

[image: image16.png]

3

AWS Service Catalog Administrator Guide

Limits

[image: image17.png]Administrator

Notifications and outputs

—

Scheduled Lambda
functions for automated
actions

—_

Provision
product

Browse Products l

—

Select Version .

Launch Product m

Populate Parameters End Users

Notifications and outputs

e

AWS Service Catalog Default Service Limits

Your AWS account has the following limits related to AWS Service Catalog. To request a limit increase, use the Service Limit Increase form.

Regional Limits

· Portfolios: 25

· Products: 100

Portfolio Limits

· Users, groups, and roles per portfolio: 25

· Products per portfolio: 25

· Tags per portfolio: 20

Product Limits

· Product versions per product: 50

· Tags per product: 20

Provisioned Product Limits

• Tags per provisioned product: 50

[image: image18.png]

4

AWS Service Catalog Administrator Guide

Limits

[image: image19.png]

Constraint Limits

• Constraints per product per portfolio: 25

[image: image20.png]

5

AWS Service Catalog Administrator Guide

Sign Up for Amazon Web Services

[image: image21.png]

Setting Up for AWS Service Catalog

Before you get started with AWS Service Catalog, complete the following tasks.

Sign Up for Amazon Web Services

To use Amazon Web Services (AWS), you will need to sign up for an AWS account.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code on the phone keypad.

AWS sends you a confirmation email after the sign up process is complete. At any time, you can view your current account activity and manage your account by going to https://aws.amazon.com/ and choosing My Account, AWS Management Console.

Grant Permissions to Administrators and End Users

Catalog administrators and end users require diﬀerent IAM permissions to use AWS Service Catalog. As a catalog administrator, you must have IAM permissions that allow you to access the AWS Service Catalog administrator console, create products, and manage products. Before your end users can use your products, you must grant them permissions that allow them to access the AWS Service Catalog end user console, launch products, and manage launched products as provisioned products.

AWS Service Catalog provides many of these permissions using managed policies. AWS maintains these policies and provides them in the AWS Identity and Access Management (IAM) service. You can use these policies by attaching them to the IAM users, groups, or roles that you and your end users use.

· Authentication and Access Control for AWS Service Catalog (p. 18)
· Grant Permissions to AWS Service Catalog Administrators (p. 6)
· Grant Permissions to AWS Service Catalog End Users (p. 8)
Grant Permissions to AWS Service Catalog Administrators

As a catalog administrator, you require access to the AWS Service Catalog administrator console view and

IAM permissions that allow you to perform tasks such as the following:

• Creating and managing portfolios

[image: image22.png]

6

AWS Service Catalog Administrator Guide

Grant Permissions to Administrators

[image: image23.png]

· Creating and managing products

· Adding template constraints to control the options that are available to end users when launching a product

· Adding launch constraints to define the IAM roles that AWS Service Catalog assumes when end users launch products

· Granting end users access to your products

You, or an administrator who manages your IAM permissions, must attach policies to your IAM user, group, or role that are required to complete this tutorial.

To grant permissions to a catalog administrator

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users. If you have already created an IAM user that you would like to use as the catalog administrator, choose the user name and choose Add permissions. Otherwise, create a user as follows:

a. Choose Add user.

b. For User name, type ServiceCatalogAdmin.

c. Select Programmatic access and AWS Management Console access.

d. Choose Next: Permissions.

3. Choose Attach existing policies directly.

4. Choose Create policy and do the following:

a. Choose the JSON tab.

b. Copy the following example policy and paste it in Policy Document:

[image: image24.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"ec2:CreateKeyPair",

"iam:AddRoleToInstanceProfile",

"iam:AddUserToGroup",

"iam:AttachGroupPolicy",

"iam:CreateAccessKey",

"iam:CreateGroup",

"iam:CreateInstanceProfile",

"iam:CreateLoginProfile",

"iam:CreateRole",

"iam:CreateUser",

"iam:Get*",

"iam:List*",

"iam:PutRolePolicy",

"iam:UpdateAssumeRolePolicy"

],

"Resource": [

"*"

]

}

]

}

c. Choose Review policy.

d. For Policy Name, type ServiceCatalogAdmin-AdditionalPermissions.

[image: image25.png]

7

AWS Service Catalog Administrator Guide

Grant Permissions to End Users

[image: image26.png]

e. (Optional) You must grant administrators additional permissions for Amazon S3 if they need to use a private CloudFormation template. For more information, see User Policy Examples in the Amazon Simple Storage Service Developer Guide
f. Choose Create Policy.

5. Return to the browser window with the permissions page and choose Refresh.

6. In the search field, type ServiceCatalog to filter the policy list.

7. Select the checkboxes for the AWSServiceCatalogAdminFullAccess and ServiceCatalogAdmin-AdditionalPermissions policies, and then choose Next: Review.

8. If you are updating a user, choose Add permissions.

If you are creating a user, choose Create user. You can download or copy the credentials and then choose Close.

9. To sign in as the catalog administrator, use your account-specific URL. To find this URL, choose Dashboard in the navigation pane and choose Copy Link. Paste the link in your browser, and use the name and password of the IAM user you created or updated in this procedure.

Grant Permissions to AWS Service Catalog End Users

Before the end user can use AWS Service Catalog, you must grant access to the AWS Service Catalog end user console view. To grant access, you attach policies to the IAM user, group, or role that is used by the end user. In the following procedure, we attach the ServiceCatalogEndUserAccess policy to an IAM group. For more information, see Predefined AWS Managed Policies (p. 18).

To allow an end user to launch a product, you must grant access to the ProvisionProduct action. You can do so using an inline policy, as shown in the following procedure.

To grant permissions to an end user

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Choose Create policy and do the following:

a. Choose the JSON tab. Copy the following example policy and paste it in Policy Document:

[image: image27.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"servicecatalog:ProvisionProduct"

],

"Resource": "*"

}

]

}

b. Choose Review policy.

c. For Policy Name, type ServiceCatalogEndusers-AdditionalPermissions.

d. Choose Create policy.

4. In the navigation pane, choose Groups.

5. Choose Create New Group and do the following:

[image: image28.png]

8

AWS Service Catalog Administrator Guide

Grant Permissions to End Users

[image: image29.png]

a. For Group Name, type Endusers, and then choose Next Step.

b. In the search field, type ServiceCatalog to filter the policy list.

c. Select the checkboxes for the ServiceCatalogEndUserAccess and ServiceCatalogEndusers-AdditionalPermissions policies, and then choose Next Step.

d. On the Review page, choose Create Group.

6. In the navigation pane, choose Users.

7. Choose Add user and do the following:

a. For User name, type a name for the user.

b. Select AWS Management Console access.

c. Choose Next: Permissions.

d. Choose Add user to group.

e. Select the checkbox for the Endusers group and choose Next: Tags and then Next: Review.

f. On the Review page, choose Create user. Download or copy the credentials and then choose Close.

[image: image30.png]

9

AWS Service Catalog Administrator Guide

Step 1: Download the Template

[image: image31.png]

Getting Started

This tutorial introduces you to the key tasks that you do as a catalog administrator. You create a product that is based on an AWS CloudFormation template, which defines the AWS resources used by the product. The product, Linux Desktop, is a cloud development environment that runs on Amazon Linux. You add the product to a portfolio and distribute it to the end user. Finally, you log in as the end user to test the product.

Before You Begin

Complete the tasks described in Setting Up for AWS Service Catalog (p. 6).

Tasks

· Step 1: Download the AWS CloudFormation Template (p. 10)
· Step 2: Create a Key Pair (p. 13)
· Step 3: Create an AWS Service Catalog Portfolio (p. 13)
· Step 4: Create an AWS Service Catalog Product (p. 14)
· Step 5: Add a Template Constraint to Limit Instance Size (p. 14)
· Step 6: Add a Launch Constraint to Assign an IAM Role (p. 15)
· Step 7: Grant End Users Access to the Portfolio (p. 16)
· Step 8: Test the End User Experience (p. 17)
Step 1: Download the AWS CloudFormation Template

To provision and configure portfolios and products, you use AWS CloudFormation templates, which are JSON– or YAML-formatted text files. For more information, see Template Formats in the AWS CloudFormation User Guide. These templates describe the resources that you want to provision. You can use the AWS CloudFormation editor or any text editor to create and save templates. For this tutorial, we've provided a simple template to get you started. This template launches a single Linux instance configured for SSH access.

Template Download

The sample template provided for this tutorial, development-environment.template, is available at https://awsdocs.s3.amazonaws.com/servicecatalog/development-environment.template.

Template Overview

The text of the sample template follows:

[image: image32.png]

{

"AWSTemplateFormatVersion" : "2010-09-09",

"Description" : "AWS Service Catalog sample template. Creates an Amazon EC2 instance running the Amazon Linux AMI. The AMI is chosen based on the region in which the stack is run. This example creates an EC2 security group for the instance to give you SSH access. **WARNING** This template creates an Amazon EC2 instance. You will be billed for the

[image: image33.png]

10

AWS Service Catalog Administrator Guide

Template Overview

[image: image34.png]

AWS resources used if you create a stack from this template.",

[image: image35.png]

[image: image36.png]

"Parameters" : {

"KeyName": {

"Description" : "Name of an existing EC2 key pair for SSH access to the EC2 instance.",

"Type": "AWS::EC2::KeyPair::KeyName"

},

"InstanceType" : {

"Description" : "EC2 instance type.",

"Type" : "String",

"Default" : "t2.micro",

"AllowedValues" : ["t2.micro", "t2.small", "t2.medium", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge"]

},

"SSHLocation" : {

"Description" : "The IP address range that can SSH to the EC2 instance.",

"Type": "String",

"MinLength": "9",

"MaxLength": "18",

"Default": "0.0.0.0/0",

"AllowedPattern": "(\\d{1,3})\\.(\\d{1,3})\\.(\\d{1,3})\\.(\\d{1,3})/(\\d{1,2})",

"ConstraintDescription": "Must be a valid IP CIDR range of the form x.x.x.x/x."

}

},

"Metadata" : {

"AWS::CloudFormation::Interface" : {

"ParameterGroups" : [{

"Label" : {"default": "Instance configuration"},

"Parameters" : ["InstanceType"]

},{

"Label" : {"default": "Security configuration"},

"Parameters" : ["KeyName", "SSHLocation"]

}],

"ParameterLabels" : {

"InstanceType": {"default": "Server size:"},

"KeyName": {"default": "Key pair:"},

"SSHLocation": {"default": "CIDR range:"}

}

}

},

"Mappings" : {

"AWSRegionArch2AMI" : {

"us-east-1"
: { "HVM64" : "ami-08842d60" },

"us-west-2"
: { "HVM64" : "ami-8786c6b7" },

"us-west-1"
: { "HVM64" : "ami-cfa8a18a" },

"eu-west-1"
: { "HVM64" : "ami-748e2903" },

"ap-southeast-1" : { "HVM64" : "ami-d6e1c584" },

"ap-northeast-1" : { "HVM64" : "ami-35072834" },

"ap-southeast-2" : { "HVM64" : "ami-fd4724c7" },

"sa-east-1"
: { "HVM64" : "ami-956cc688" },

"cn-north-1"
: { "HVM64" : "ami-ac57c595" },

"eu-central-1"
: { "HVM64" : "ami-b43503a9" }

}

},

"Resources" : {

"EC2Instance" : {

"Type" : "AWS::EC2::Instance",

"Properties" : {

"InstanceType" : { "Ref" : "InstanceType" },

[image: image37.png]

11

AWS Service Catalog Administrator Guide

Template Overview

[image: image38.png]

"SecurityGroups" : [{ "Ref" : "InstanceSecurityGroup" }],

[image: image39.png]

"KeyName" : { "Ref" : "KeyName" },

"ImageId" : { "Fn::FindInMap" : ["AWSRegionArch2AMI", { "Ref" : "AWS::Region" }, "HVM64"] }

}

},

"InstanceSecurityGroup" : {

"Type" : "AWS::EC2::SecurityGroup",

"Properties" : {

"GroupDescription" : "Enable SSH access via port 22",

"SecurityGroupIngress" : [{

"IpProtocol" : "tcp",

"FromPort" : "22",

"ToPort" : "22",

"CidrIp" : { "Ref" : "SSHLocation"}

}]

}

}

},

"Outputs" : {

"PublicDNSName" : {

"Description" : "Public DNS name of the new EC2 instance",

"Value" : { "Fn::GetAtt" : ["EC2Instance", "PublicDnsName"] }

},

"PublicIPAddress" : {

"Description" : "Public IP address of the new EC2 instance",

"Value" : { "Fn::GetAtt" : ["EC2Instance", "PublicIp"] }

}

}

}

Template Resources

The template declares resources to be created when the product is launched. It consists of the following sections:

· AWSTemplateFormatVersion – The version of the AWS Template Format used to create this template.
· Description – A description of the template.

· Parameters – The parameters that your user must specify to launch the product. For each parameter, the template includes a description and constraints that must be met by the value typed. For more information about constraints, see Using AWS Service Catalog Constraints (p. 31).

The KeyName parameter allows you to specify an Amazon Elastic Compute Cloud (Amazon EC2) key pair name that end users must provide when they use AWS Service Catalog to launch your product. You will create the key pair in the next step.

· Metadata – An optional section that defines details about the template. The AWS::CloudFormation::Interface key defines how the end user console view displays parameters. The ParameterGroups property defines how parameters are grouped and headings for those groups. The ParameterLabels property defines friendly parameter names. When a user is specifying parameters to launch a product that is based on this template, the end user console view displays the
parameter labeled Server size: under the heading Instance configuration, and it displays the

parameters labeled Key pair: and CIDR range: under the heading Security configuration.

· Mappings – A list of regions and the Amazon Machine Image (AMI) that corresponds to each. AWS Service Catalog uses the mapping to determine which AMI to use based on the region that the user selects in the AWS Management Console.

· Resources – An EC2 instance running Amazon Linux and a security group that allows SSH access to the instance. The Properties section of the EC2 instance resource uses the information that the user types to configure the instance type and a key name for SSH access.

[image: image40.png]

12

AWS Service Catalog Administrator Guide

Step 2: Create a Key Pair

[image: image41.png]

AWS CloudFormation uses the current region to select the AMI ID from the mappings defined earlier and assigns a security group to it. The security group is configured to allow inbound access on port 22 from the CIDR IP address range that the user specifies.

· Outputs – Text that tells the user when the product launch is complete. The provided template gets the public DNS name of the launched instance and displays it to the user. The user needs the DNS name to connect to the instance using SSH.

Step 2: Create a Key Pair

To enable your end users to launch the product that is based on the sample template for this tutorial, you must create an Amazon EC2 key pair. A key pair is a combination of a public key that is used to encrypt data and a private key that is used to decrypt data. For more information about key pairs, see Amazon EC2 Key Pairs in the Amazon EC2 User Guide for Linux Instances.

The AWS CloudFormation template for this tutorial, development-environment.template, includes the KeyName parameter:

[image: image42.png]

. . .

"Parameters" : {

"KeyName": {

"Description" : "Name of an existing EC2 key pair for SSH access to the EC2 instance.",

"Type": "AWS::EC2::KeyPair::KeyName"

},

. . .

End users must specify the name of a key pair when they use AWS Service Catalog to launch the product that is based on the template.

If you already have a key pair in your account that you would prefer to use, you can skip ahead to Step 3:
Create an AWS Service Catalog Portfolio (p. 13). Otherwise, complete the following steps.

To create a key pair

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, under Network & Security, choose Key Pairs.

3. On the Key Pairs page, choose Create Key Pair.

4. For Key pair name, type a name that is easy for you to remember, and then choose Create.

5. When the console prompts you to save the private key file, save it in a safe place.

Important

This is the only chance for you to save the private key file.

Step 3: Create an AWS Service Catalog Portfolio

To provide users with products, begin by creating a portfolio for those products.

To create a portfolio

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. If you are using the AWS Service Catalog administrator console for the first time, choose Get started to start the wizard for configuring a portfolio. Otherwise, choose Create portfolio.

[image: image43.png]

13

AWS Service Catalog Administrator Guide

Step 4: Create a Product

[image: image44.png]

3. Type the following values:

· Portfolio name – Engineering Tools
• Description – Sample portfolio that contains a single product.

• Owner – IT (it@example.com)

4. Choose Create.

Step 4: Create an AWS Service Catalog Product

After you have created a portfolio, you're ready to add a product. For this tutorial, you will create a product called Linux Desktop, a cloud development environment that runs on Amazon Linux.

To create a product

1. If you've just completed the previous step, the Portfolios page is already displayed. Otherwise, open https://console.aws.amazon.com/servicecatalog/.
2. Choose the name Engineering Tools to open the portfolio details page, and then choose Upload new product.

3. On the Enter product details page, type the following and then choose Next:

· Product name – Linux Desktop
· Description – Cloud development environment configured for engineering staff.
Runs AWS Linux.

· Provided by – IT
· Vendor – (blank)
4. On the Enter support details page, type the following and then choose Next:

· Email contact – ITSupport@example.com
· Support link – https://wiki.example.com/IT/support
· Support description – Contact the IT department for issues deploying or connecting to this product.
5. On the Version details page, choose Specify an Amazon S3 template URL, type the following, and then choose Next:

· Select template – https://awsdocs.s3.amazonaws.com/servicecatalog/development-environment.template
· Version title – v1.0
· Description – Base Version
6. On the Review page, choose Create.

Step 5: Add a Template Constraint to Limit Instance Size

Constraints add another layer of control over products at the portfolio level. Constraints can control the launch context of a product (launch constraints), or add rules to the AWS CloudFormation template (template constraints). For more information, see Using AWS Service Catalog Constraints (p. 31).

Now add a template constraint to the Linux Desktop product that prevents users from selecting large instance types at launch time. The development-environment template allows the user to select from

[image: image45.png]

14

AWS Service Catalog Administrator Guide

Step 6: Add a Launch Constraint

[image: image46.png]

six instance types; this constraint limits valid instance types to the two smallest types, t2.micro and t2.small. For more information, see T2 Instances in the Amazon EC2 User Guide for Linux Instances.

To add a template constraint to the Linux Desktop product

1. On the portfolio details page, expand the Constraints section, and choose Add constraints.

2. In the Select product and type window, for Product, choose Linux Desktop. Then, for Constraint type, choose Template.

3. Choose Continue.

4. For Description, type Small instance sizes.

5. Paste the following into the Template constraint text box:

[image: image47.png]

{

"Rules": {

"Rule1": {

"Assertions": [

{

"Assert" : {"Fn::Contains": [["t2.micro", "t2.small"], {"Ref":

"InstanceType"}]},

"AssertDescription": "Instance type should be t2.micro or t2.small"

}

]

}

}

}

6. Choose Submit.

Step 6: Add a Launch Constraint to Assign an IAM Role

A launch constraint designates an IAM role that AWS Service Catalog assumes when an end user launches a product. For this step, you will add a launch constraint to the Linux Desktop product so that AWS Service Catalog can use the AWS resources that are part of the product's AWS CloudFormation template. This launch constraint will enable the end user to launch the product and, after it is launched, manage it as a provisioned product. For more information, see AWS Service Catalog Launch Constraints (p. 31).

Without a launch constraint, you would need to grant additional IAM permissions to your end users before they could use the Linux Desktop product. For example, the ServiceCatalogEndUserAccess policy grants the minimum IAM permissions required to access the AWS Service Catalog end user console view. By using a launch constraint, you can keep your end users' IAM permissions to a minimum, which is an IAM best practice. For more information, see Grant least privilege in the IAM User Guide.

To add a launch constraint

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies. Choose Create policy and do the following:

a. On the Create policy page, choose the JSON tab.

b. Copy the following example policy and paste it in Policy Document:

[image: image48.png]

{

"Version": "2012-10-17",

"Statement": [

[image: image49.png]

15

AWS Service Catalog Administrator Guide

Step 7: Grant End Users Access to the Portfolio

[image: image50.png]

{

[image: image51.png]

"Effect": "Allow",

"Action": [

"cloudformation:CreateStack",

"cloudformation:DeleteStack",

"cloudformation:DescribeStackEvents",

"cloudformation:DescribeStacks",

"cloudformation:GetTemplateSummary",

"cloudformation:SetStackPolicy",

"cloudformation:ValidateTemplate",

"cloudformation:UpdateStack",

"ec2:*",

"s3:GetObject",

"servicecatalog:*",

"sns:*"

],

"Resource": "*"

}

]

}

c. Choose Review policy.

d. For Policy Name, type linuxDesktopPolicy.

e. Choose Create policy.

3. In the navigation pane, choose Roles. Choose Create role and do the following:

a. For Select role type, choose AWS service and then choose Service Catalog. Select the Service Catalog use case and then choose Next: Permissions.

b. Search for the linuxDesktopPolicy policy and then select the checkbox.

c. Choose Next: Tags, and then Next: Review.

d. For Role name, type linuxDesktopLaunchRole.

e. Choose Create role.

4. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

5. Choose the Engineering Tools portfolio.

6. On the portfolio details page, expand the Constraints section, and then choose Add constraints.

7. For Product, choose Linux Desktop, and for Constraint type, choose Launch. Choose Continue.

8. On the Launch constraint page, for IAM role, choose linuxDesktopLaunchRole, and then choose Submit.

Step 7: Grant End Users Access to the Portfolio

Now that you have created a portfolio and added a product, you are ready to grant access to end users. Prerequisites

If you haven't created an IAM group for the endusers, see Grant Permissions to AWS Service Catalog End Users (p. 8).

To provide access to the portfolio

1. On the portfolio details page, expand the Users, groups and roles section.

2. Choose Add user, group or role.

3. On the Groups tab, select the checkbox for the IAM group for the endusers.

4. Choose Add Access.

[image: image52.png]

16

AWS Service Catalog Administrator Guide

Step 8: Test the End User Experience

[image: image53.png]

Step 8: Test the End User Experience

To verify that the end user can successfully access the end user console view and launch your product, sign in to AWS as the end user and perform those tasks.

To verify that the end user can access the end user console

1. To sign in as the IAM user, use account-specific URL. To find this URL, open the IAM console, choose Dashboard in the navigation pane, and choose Copy Link. Paste the link in your browser, and use the name and password of the IAM user.

2. In the menu bar, choose the region in which you created the Engineering Tools portfolio.

3. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/ and select Service Catalog, Dashboard to see the following:

· Products – The products that the user can use.

· Provisioned products – The provisioned products that the user has launched.

To verify that the end user can launch the Linux Desktop product

1. In the Products section of the console, choose Linux Desktop.

2. Choose Launch product to start the wizard for configuring your product.

3. On the Product version page, for Name, type Linux-Desktop.

4. In the Version table, choose v1.0.

5. Choose Next.

6. On the Parameters page, type the following and choose Next:

· Server size – Choose t2.micro.

· Key pair – Select the key pair that you created in Step 2: Create a Key Pair (p. 13).
· CIDR range – Type a valid CIDR range for the IP address from which you will connect to the instance. This can be the default value (0.0.0.0/0) to allow access from any IP address, your IP address followed by /32 to restrict access to your IP address only, or something in between.

7. On the Review page, review the information that you typed, and then choose Launch to launch the stack. The console displays the stack details page for the Linux-Desktop stack. The initial status of the product is Launching. It takes several minutes for AWS Service Catalog to launch the product. To see the current status, refresh your browser. After the product is launched, the status is Available.

[image: image54.png]

17

AWS Service Catalog Administrator Guide

Predefined AWS Managed Policies

[image: image55.png]

Authentication and Access Control for AWS Service Catalog

AWS Service Catalog integrates with AWS Identity and Access Management (IAM) to enable you to grant AWS Service Catalog administrators the permissions they need to create and manage products, and

to grant end users the permissions they need to launch products and manage provisioned products. These policies are either created and managed by AWS or individually by administrators and end users. To control access, you attach these policies to the IAM users, groups, and roles that you use with AWS Service Catalog.

Contents

· Predefined AWS Managed Policies (p. 18)
· Console Access for End Users (p. 19)
· Product Access for End Users (p. 20)
· Example Policies for Managing Provisioned Products (p. 20)
Predefined AWS Managed Policies

The managed policies created by AWS grant the required permissions for common use cases. You can attach these policies to your IAM users and roles. For more information, see AWS Managed Policies in the IAM User Guide.

The following are the AWS managed policies for AWS Service Catalog.

Administrators

· AWSServiceCatalogAdminFullAccess — Grants full access to the administrator console view and permission to create and manage products and portfolios.

· ServiceCatalogAdminReadOnlyAccess — Grants full access to the administrator console view. Does not grant access to create or manage products and portfolios.

End users

· AWSServiceCatalogEndUserFullAccess — Grants full access to the end user console view. Grants permission to launch products and manage provisioned products.

· ServiceCatalogEndUserAccess — Grants read-only access to the end user console view. Does not grant permission to launch products or manage provisioned products.

To attach a policy to an IAM user

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name (not the check box) of the IAM user.

4. On the Permissions tab, choose Add permissions.

5. On the Add permissions page, choose Attach existing policies directly.

6. Select the check box next to the managed policy for AWS Service Catalog, and then choose Next: Review.

7. On the Permissions summary page, choose Add permissions.

[image: image56.png]

18

AWS Service Catalog Administrator Guide

Deprecated Policies

[image: image57.png]

8. (Optional) You must grant administrators additional permissions for Amazon S3 if they need to use a private CloudFormation template. For more information, see User Policy Examples in the Amazon Simple Storage Service Developer Guide
Deprecated Policies

The following managed policies are deprecated:

· ServiceCatalogAdminFullAccess — Use AWSServiceCatalogAdminFullAccess instead.

· ServiceCatalogEndUserFullAccess — Use AWSServiceCatalogEndUserFullAccess instead.

Use the following procedure to ensure that your administrators and end users are granted permissions using the current policies.

To migrate from the deprecated policies to the current policies

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the search field, type ServiceCatalog to filter the policy list. Choose the name (not the check box) for ServiceCatalogAdminFullAccess.

4. For each attached entity (user, group, or role), do the following:

a. Open the summary page for the entity.

b. Add one of the current policies, as described in the procedure To attach a policy to an IAM user (p. 18).
c. On the Permissions tab, next to ServiceCatalogAdminFullAccess, choose Detach Policy. When prompted for confirmation, choose Detach.

5. Repeat the process for ServiceCatalogEndUserFullAccess.

Console Access for End Users

Before end users can use a product to which you give access, you must provide them additional IAM permissions to allow them to use each of the underlying AWS resources in a product's AWS CloudFormation template. For example, if a product template includes Amazon Relational Database Service (Amazon RDS), you must grant the users Amazon RDS permissions to launch the product.

The AWSServiceCatalogEndUserFullAccess and ServiceCatalogEndUserAccess policies grant access to the AWS Service Catalog end user console view. When a user who has either of these policies chooses Service Catalog in the AWS Management Console, the end user console view displays.

If you apply the ServiceCatalogEndUserAccess policy, your users have access to the end user console, but they won't have the permissions that they need to launch products and manage provisioned products. You can grant these permissions directly to an end user using IAM, but if you want to limit the access that end users have to AWS resources, you should attach the policy to a launch role. You then use AWS Service Catalog to apply the launch role to a launch constraint for the product. For more information about applying a launch role, launch role limitations, and a sample launch role, see AWS Service Catalog Launch Constraints (p. 31).

If you grant users the following IAM permissions, which are meant for AWS Service Catalog administrators, the administrator console view displays instead:

· catalog-admin:ListPortfolios

[image: image58.png]

19

AWS Service Catalog Administrator Guide

Product Access for End Users

[image: image59.png]

· catalog-admin:SearchListings

Don't grant end users these permissions unless you want them to have access to the administrator console view.

Product Access for End Users

Before end users can use a product to which you give access, you must provide them additional IAM permissions to allow them to use each of the underlying AWS resources in a product's AWS CloudFormation template. For example, if a product template includes Amazon Relational Database Service (Amazon RDS), you must grant the users Amazon RDS permissions to launch the product.

If you apply the ServiceCatalogEndUserAccess policy, your users have access to the end user console view, but they won't have the permissions that they need to launch products and manage provisioned products. You can grant these permissions directly to an end user in IAM, but if you want to limit the access that end users have to AWS resources, you should attach the policy to a launch role. You then use AWS Service Catalog to apply the launch role to a launch constraint for the product. For more information about applying a launch role, launch role limitations, and a sample launch role, see AWS Service Catalog Launch Constraints (p. 31).

Example Policies for Managing Provisioned Products

You can create custom policies to help meet the security requirements of your organization. The following examples describe how to customize the access level for each action with support for user, role, and account levels. You can grant users access to view, update, terminate, and manage provisioned products created only by that user or created by others also under their role or the account to which they are logged in. This access is hierarchical — granting account level access also grants role level access and user level access, while adding role level access also grants user level access but not account level access. You can specify these in the policy JSON using a Condition block as accountLevel, roleLevel, or userLevel.

These examples also apply to access levels for AWS Service Catalog API write operations UpdateProvisionedProduct and TerminateProvisionedProduct, and read operations DescribeRecord, ScanProvisionedProducts, and ListRecordHistory. The ScanProvisionedProducts and ListRecordHistory API operations use AccessLevelFilterKey as input, and that key's values correspond to the Condition block levels discussed here (accountLevel is equivalent to an AccessLevelFilterKey value of "Account", roleLevel to "Role", and userLevel to "User"). For more information, see the AWS Service Catalog Developer Guide.

Examples

· Example: Full Admin Access to Provisioned Products (p. 20)
· Example: End-user Access to Provisioned Products (p. 21)
· Example: Partial Admin Access to Provisioned Products (p. 22)
Example: Full Admin Access to Provisioned Products

The following policy allows full read and write access to provisioned products and records within the catalog at the account level.

[image: image60.png]

20

AWS Service Catalog Administrator Guide

Example: End-user Access to Provisioned Products

[image: image61.png]

[image: image62.png]

{

"Version":"2012-10-17",

"Statement":[

{

"Effect":"Allow",

"Action":[

"servicecatalog:*"

],

"Resource":"*",

"Condition": {

"StringEquals": {

"servicecatalog:accountLevel": "self"

}

}

}

]

}

This policy is functionally equivalent to the following policy:

[image: image63.png]

{

"Version":"2012-10-17",

"Statement":[

{

"Effect":"Allow",

"Action":[

"servicecatalog:*"

],

"Resource":"*"

}

]

}

In other words, not specifying a Condition block in any policy for AWS Service Catalog is treated as the same as specifying "servicecatalog:accountLevel" access. Note that accountLevel access includes roleLevel and userLevel access.

Example: End-user Access to Provisioned Products

The following policy restricts access to read and write operations to only the provisioned products or associated records that the current user created.

[image: image64.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"servicecatalog:DescribeProduct",

"servicecatalog:DescribeProductView",

"servicecatalog:DescribeProvisioningParameters",

"servicecatalog:DescribeRecord",

"servicecatalog:ListLaunchPaths",

"servicecatalog:ListRecordHistory",

"servicecatalog:ProvisionProduct",

"servicecatalog:ScanProvisionedProducts",

"servicecatalog:SearchProducts",

"servicecatalog:TerminateProvisionedProduct",

"servicecatalog:UpdateProvisionedProduct"

],

"Resource": "*",

[image: image65.png]

21

AWS Service Catalog Administrator Guide

Example: Partial Admin Access to Provisioned Products

[image: image66.png]

"Condition": {

[image: image67.png]

"StringEquals": {

"servicecatalog:userLevel": "self"

}

}

}

]

}

Example: Partial Admin Access to Provisioned Products

The two policies below, if both applied to the same user, allow what might be called a type of "partial admin access" by providing full read-only access and limited write access. This means the user can see any provisioned product or associated record within the catalog's account but cannot perform any actions on any provisioned products or records that aren't owned by that user.

The first policy allows the user access to write operations on the provisioned products that the current user created, but no provisioned products created by others. The second policy adds full access to read operations on provisioned products created by all (user, role, or account).

[image: image68.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"servicecatalog:DescribeProduct",

"servicecatalog:DescribeProductView",

"servicecatalog:DescribeProvisioningParameters",

"servicecatalog:ListLaunchPaths",

"servicecatalog:ProvisionProduct",

"servicecatalog:SearchProducts",

"servicecatalog:TerminateProvisionedProduct",

"servicecatalog:UpdateProvisionedProduct"

],

"Resource": "*",

"Condition": {

"StringEquals": {

"servicecatalog:userLevel": "self"

}

}

}

]

}

[image: image69.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"servicecatalog:DescribeRecord",

"servicecatalog:ListRecordHistory",

"servicecatalog:ScanProvisionedProducts"

],

"Resource": "*",

"Condition": {

"StringEquals": {

"servicecatalog:accountLevel": "self"

[image: image70.png]

22

AWS Service Catalog Administrator Guide

Example: Partial Admin Access to Provisioned Products

[image: image71.png]

}

[image: image72.png]

}

}

]

}

[image: image73.png]

23

AWS Service Catalog Administrator Guide

Managing Portfolios

[image: image74.png]

Managing Catalogs

AWS Service Catalog provides an interface for managing portfolios, products, and constraints from an administrator console.

Note

To perform any of the tasks in this section, you must have administrator permissions for AWS Service Catalog. For more information, see Authentication and Access Control for AWS Service Catalog (p. 18).

Tasks

· Managing Portfolios (p. 24)
· Managing Products (p. 28)
· Using AWS Service Catalog Constraints (p. 31)
· AWS Service Catalog Self-Service Actions (p. 43)
· Adding AWS Marketplace Products to Your Portfolio (p. 46)
· Portfolio Sharing (p. 51)
· Using AWS CloudFormation StackSets (p. 53)
Managing Portfolios

You create, view, and update portfolios on the Portfolios page in the AWS Service Catalog administrator console.

Tasks

· Creating, Viewing, and Deleting Portfolios (p. 24)
· Viewing Portfolio Details (p. 25)
· Creating and Deleting Portfolios (p. 25)
· Adding Products (p. 25)
· Adding Constraints (p. 27)
· Granting Access to Users (p. 27)
Creating, Viewing, and Deleting Portfolios

The Portfolios page displays a list of the portfolios that you have created in the current region. Use this page to create new portfolios, view a portfolio's details, or delete portfolios from your account.

To view the Portfolios page

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Select a diﬀerent region as necessary.

3. If you are new to AWS Service Catalog, you see the AWS Service Catalog start page. Choose Get started to create a portfolio. Follow the instructions to create your first portfolio, and then proceed to the Portfolios page.

[image: image75.png]

24

AWS Service Catalog Administrator Guide

Viewing Portfolio Details

[image: image76.png]

While using AWS Service Catalog, you can return to the Portfolios page at any time; choose Service Catalog in the navigation bar and then choose Portfolios.

Viewing Portfolio Details

In the AWS Service Catalog administrator console, the Portfolio details page lists the settings for a portfolio. Use this page to manage the products in the portfolio, grant users access to products, and apply TagOptions and constraints.

To view the Portfolio details page

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose the portfolio that you want to manage.

Creating and Deleting Portfolios

Use the Portfolios page to create and delete portfolios. Deleting a portfolio removes it from your account. Before you can delete a portfolio, you must remove all the products, constraints, and users that it contains.

To create a new portfolio

1. Navigate to the Portfolios page.

2. Choose Create portfolio.

3. On the Create portfolio page, enter the requested information.

4. Choose Create. AWS Service Catalog creates the portfolio and displays the portfolio details.

To delete a portfolio

1. Navigate to the Portfolios page.

2. Select the portfolio by clicking the corresponding radio button or anywhere on the listing except on the portfolio title.

3. Choose Delete portfolio.

4. Choose Continue.

Adding Products

To add products to a portfolio, you either create a new product or add an existing product from your catalog to the portfolio.

Note

The AWS CloudFormation template that you upload when you create an AWS Service Catalog product is stored in an Amazon Simple Storage Service (Amazon S3) bucket that starts with cf-templates- in your AWS account. Do not delete these files unless you are sure that they are no longer in use.

Adding a New Product

You add new products directly from the portfolio details page. When you create a product from this page, AWS Service Catalog adds it to the currently selected portfolio. You can also add a product to other portfolios.

[image: image77.png]

25

AWS Service Catalog Administrator Guide

Adding Products

[image: image78.png]

To add a new product

1. Navigate to the Portfolios page, and then choose the name of the portfolio to which you want to add the product.

2. On the portfolio details page, expand the Products section, and then choose Upload new product.

3. For Enter product details, enter the following:

· Product name – The name of the product.

· Short description – The short description. This description appears in search results to help the user choose the correct product.

· Description – The full description. This description is shown in the product listing to help the user choose the correct product.

· Provided by – The name or email address of your IT department or administrator.

· Vendor (optional) – The name of the application's publisher. This field allows users to sort their products list to makes it easier to find the products that they need.

Choose Next.

4. For Enter support details, enter the following:

· Email contact (optional) – The email address for reporting issues with the product.

· Support link (optional) – A URL to a site where users can find support information or file tickets. The URL must begin with http:// or https://.

· Support description (optional) – A description of how users should use the Email contact and Support link.

Choose Next.

5. On the Version details page, enter the following:

· Select template – An AWS CloudFormation template from a local drive or a URL that points to a template stored in Amazon S3. If you specify an Amazon S3 URL, it must begin with https://. The extension for the template file must be .template.

· Version title – the name of the product version (e.g., "v1", "v2beta"). No spaces are allowed.

· Description (optional) – A description of the product version including how this version diﬀers from the previous version.

Choose Next.

6. On the Review page, verify that the information is correct, and then choose Confirm and upload. After a few seconds, the product appears in your portfolio. You might need to refresh your browser to see the product.

Adding an Existing Product

You can add existing products to a portfolio from three places: the Portfolios list, the portfolio details page, or the Products page.

To add an existing product to a portfolio

1. Navigate to the Portfolios page.

2. Choose a portfolio, and then choose Add product.

3. Choose a product, and then choose Add product to portfolio.

[image: image79.png]

26

AWS Service Catalog Administrator Guide

Adding Constraints

[image: image80.png]

Removing a Product from a Portfolio

When you no longer want users to use a product, remove it from a portfolio. The product is still available in your catalog from the Products page, and you can still add it to other portfolios. You can remove multiple products from a portfolio at one time.

To remove a product from a portfolio

1. Navigate to the Portfolios page, and then choose the portfolio that contains the product. The portfolio details page opens.

2. Expand the Products section.

3. Choose one or more products, and then choose Remove product.

4. Choose Continue.

Adding Constraints

To control how users are able to use products, add constraints. For more information about the types of constraints that AWS Service Catalog supports, see Using AWS Service Catalog Constraints (p. 31).

You add constraints to products after they have been placed in a portfolio.

To add a constraint to a product

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose Portfolios and select a portfolio.

3. In the portfolio details page, expand the Constraints section and choose Add constraints.

4. For Product, select the product to which to apply the constraint.

5. For Constraint type, choose one of the following options:

· Launch – The IAM role that AWS Service Catalog uses to launch and manage the product.

· Notification – The Amazon SNS topic specified to receive notifications.

· Template – A JSON–formatted text file that contains one or more rules. Rules are added to the AWS CloudFormation template used by the product. For more information, see Template Constraint Rules (p. 36).
· Stack Set – Uses AWS CloudFormation StackSets to specify multiple accounts and regions for the AWS Service Catalog product launch.

6. Choose Continue.

To edit a constraint

1. Sign in to the AWS Management Console and open the AWS Service Catalog administrator console at https://console.aws.amazon.com/catalog/.

2. Choose Portfolios and select a portfolio.

3. In the portfolio details page, expand the Constraints section and select the constraint to edit.

4. Choose Edit constraints.

5. Edit the constraint as needed, and choose Submit.

Granting Access to Users

Give users access to portfolios by using IAM users, groups, and roles. The best way to provide portfolio access for many users is to put the users in an IAM group and grant access to that group. That way you

[image: image81.png]

27

AWS Service Catalog Administrator Guide

Managing Products

[image: image82.png]

can simply add and remove users from the group to manage portfolio access. For more information, see IAM Users and Groups in the IAM User GuideUsing IAM.

In addition to access to a portfolio, IAM users must also have access to the AWS Service Catalog end user console. You grant access to the console by applying permissions in IAM. For more information, see Authentication and Access Control for AWS Service Catalog (p. 18).

To grant portfolio access to users or groups

1. In the portfolio details page, expand Users, groups and roles, and then choose Add user, group or role.

2. Choose the Groups, Users, or Roles tab to add groups, users, or roles, respectively.

3. Choose one or more users, groups, or roles, and then choose Add Access to grant them access to the current portfolio.

Tip

To grant access to a combination of groups, users, and roles, you can switch between the tabs without losing your selection.

To remove access to a portfolio

1. On the portfolio details page, choose the checkbox for the user or group.

2. Choose Remove user, group or role.

Managing Products

You create products by packaging an AWS CloudFormation template with metadata, update products by creating a new version based on an updated template, and group products together into portfolios to distribute them to users.

New versions of products are propagated to all users who have access to the product through a portfolio.

When you distribute an update, end users can update existing provisioned products with just a few clicks.

Tasks

· Viewing the Products Page (p. 28)
· Creating Products (p. 29)
· Adding Products to Portfolios (p. 29)
· Updating Products (p. 30)
· Deleting Products (p. 30)
Viewing the Products Page

You manage products from the Products page in the AWS Service Catalog administrator console.

To view the Products page

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose Service Catalog in the navigation bar.

3. Choose Products.

[image: image83.png]

28

AWS Service Catalog Administrator Guide

Creating Products

[image: image84.png]

Creating Products

You create products from the Products page in the AWS Service Catalog administrator console.

To create a new AWS Service Catalog product

1. Navigate to the Products page.

2. Choose Upload new product.

3. For Enter product details, enter the following:

· Product name – The name of the product.

· Short description – The short description. This description appears in search results to help the user choose the correct product.

· Description – The full description. This description is shown in the product listing to help the user choose the correct product.

· Provided by – The name of your IT department or administrator.

· Vendor (optional) – The name of the application's publisher. This field allows users to sort their products list to makes it easier to find the products that they need.

Choose Next.

4. For Enter support details, enter the following:

· Email contact (optional) – The email address for reporting issues with the product.

· Support link (optional) – A URL to a site where users can find support information or file tickets. The URL must begin with http:// or https://.

· Support description (optional) – A description of how users should use the Email contact and Support link.

Choose Next.

5. For Version details, enter the following:

· Select template – An AWS CloudFormation template from a local drive or a URL that points to a template stored in Amazon S3. If you specify an Amazon S3 URL, it must begin with https://. The extension for the template file must be .template.

· Version title – the name of the product version (e.g., "v1", "v2beta"). No spaces are allowed.

· Description (optional) – A description of the product version including how this version diﬀers from the previous version.

6. Choose Next.

7. On the Review page, verify that the information is correct, and then choose Confirm and upload. After a few seconds, the product appears on the Products page. You might need to refresh your browser to see the product.

You can also use CodePipeline to create and configure a pipeline to deploy your product template to AWS Service Catalog and deliver changes you have made in your source repository. For more information, see Tutorial: Create a Pipeline That Deploys to AWS Service Catalog.

Adding Products to Portfolios

You can add products in any number of portfolios. When a product is updated, all of the portfolios that contain the product automatically receive the new version, including shared portfolios.

[image: image85.png]

29

AWS Service Catalog Administrator Guide

Updating Products

[image: image86.png]

To add a product from your catalog to a portfolio

1. Navigate to the Products page.

2. Choose a product, choose Actions, and then choose Add product to portfolio.

3. Choose a portfolio, and then choose Add product to portfolio.

Updating Products

When you need to update a product's AWS CloudFormation template, you create a new version of your product. A new product version is automatically available to all users who have access to a portfolio that contains the product.

Users who are currently running a provisioned product of the previous version of the product can update their provisioned product using the end user console view. When a new version of a product is available, users can use the Update provisioned product command on either the Provisioned product list or Provisioned product details pages.

Note

Before you create a new version of a product, test your product updates in AWS CloudFormation to ensure that they work.

To create a new product version

1. Navigate to the Products page.

2. Choose the product name.

3. On the product details page, expand the Versions section, and then choose Create new version.

4. For Version details, enter the following:

· Select template – An AWS CloudFormation template from a local drive or a URL that points to a template stored in Amazon S3. If you specify an Amazon S3 URL, it must begin with https://. The extension for the template file must be .template and can be either JSON– or YAML-formatted text files. For more information, see Template Formats in the AWS CloudFormation User Guide.

· Version title – the name of the product version (e.g., "v1", "v2beta"). No spaces are allowed.

· Description (optional) – A description of the product version including how this version diﬀers from the previous version.

Choose Save.

You can also use CodePipeline to create and configure a pipeline to deploy your product template to AWS Service Catalog and deliver changes you have made in your source repository. For more information, see Tutorial: Create a Pipeline That Deploys to AWS Service Catalog.

Deleting Products

To remove products from your account completely, delete them from your catalog. Deleting a product removes all versions of the product from every portfolio that contains the product. Deleted products cannot be recovered.

To delete a product from your catalog

1. Navigate to the Products page.

[image: image87.png]

30

AWS Service Catalog Administrator Guide

Using Constraints

[image: image88.png]

2. Choose the product, choose Actions, and then choose Delete product.

3. Verify that you have chosen the product that you want to delete, and then choose Continue.

Using AWS Service Catalog Constraints

To control which rules are applied when the end user launches a product from a specific portfolio, you apply constraints. You apply constraints to products from the portfolio details page. Constraints are active as soon as you create them and apply to all current versions of a product that are not already launched when you create the constraint.

Constraints

· AWS Service Catalog Launch Constraints (p. 31)
· AWS Service Catalog Notification Constraints (p. 33)
· AWS Service Catalog Resource Update Constraints (p. 34)
· AWS Service Catalog Stack Set Constraints (p. 34)
· AWS Service Catalog Template Constraints (p. 35)
AWS Service Catalog Launch Constraints

A launch constraint specifies the AWS Identity and Access Management (IAM) role that AWS Service Catalog assumes when an end user launches a product. An IAM role is a collection of permissions that an IAM user or AWS service can assume temporarily to use AWS services. For an introductory example, see Step 6: Add a Launch Constraint to Assign an IAM Role (p. 15).

Launch constraints are associated with a product within the portfolio (product-portfolio association), not at the portfolio level or to a product across all portfolios. To associate a launch constraint with all products in a portfolio, you must apply the launch constraint to each product individually.

Without a launch constraint, end users must launch and manage products using their own IAM credentials. To do so, they must have permissions for AWS CloudFormation, the AWS services used by the products, and AWS Service Catalog. By using a launch role, you can instead limit the end users' permissions to the minimum that they require for that product. For more information about end user permissions, see Authentication and Access Control for AWS Service Catalog (p. 18).

To create and assign IAM roles, you must have the following IAM administrative permissions:

· iam:CreateRole

· iam:PutRolePolicy

· iam:PassRole

· iam:Get*

· iam:List*

Configuring a Launch Role

The IAM role that you assign to a product as a launch constraint must have permissions to use the following:

· AWS CloudFormation

· Services used in the AWS CloudFormation template for the product

[image: image89.png]

31

AWS Service Catalog Administrator Guide

Launch Constraints

[image: image90.png]

• Read access to the AWS CloudFormation template in Amazon S3

The IAM role also must have a trust relationship with AWS Service Catalog, which you assign by selecting AWS Service Catalog as the role type in the following procedure. The trust relationship allows AWS Service Catalog to assume the role during the launch process to create resources.

Note

The servicecatalog:ProvisionProduct, servicecatalog:TerminateProduct, and servicecatalog:UpdateProduct permissions cannot be assigned in a launch role. You must use IAM roles, as shown in the inline policy steps in the section Grant Permissions to AWS Service Catalog End Users (p. 8).

To create a launch role

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Roles.

3. Choose Create New Role.

4. Enter a role name and choose Next Step.

5. Under AWS Service Roles next to AWS Service Catalog, choose Select.

6. On the Attach Policy page, Choose Next Step.

7. To create the role, choose Create Role.

To attach a policy to the new role

1. Choose the role that you created to view the role details page.

2. Choose the Permissions tab, and expand the Inline Policies section. Then, choose click here.

3. Choose Custom Policy, and then choose Select.

4. Enter a name for the policy, and then paste the following into the Policy Document editor:

[image: image91.png]

{

"Version":"2012-10-17",

"Statement":[

{

"Effect":"Allow",

"Action":[

"catalog-user:*",

"cloudformation:CreateStack",

"cloudformation:DeleteStack",

"cloudformation:DescribeStackEvents",

"cloudformation:DescribeStacks",

"cloudformation:GetTemplateSummary",

"cloudformation:SetStackPolicy",

"cloudformation:ValidateTemplate",

"cloudformation:UpdateStack",

"s3:GetObject"

],

"Resource":"*"

}

]

}

5. Add a line to the policy for each additional service that the product uses. For example, to add permission for Amazon Relational Database Service (Amazon RDS), type a comma at the end of the last line in the "Action" list, and then add the following line:

[image: image92.png]

"rds:*"

[image: image93.png]

32

AWS Service Catalog Administrator Guide

Notification Constraints

[image: image94.png]

6. Choose Apply Policy.

Applying a Launch Constraint

Next, assign the role to the product as a launch constraint. This tells AWS Service Catalog to assume the role when an end user launches the product.

To assign the role to a product

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose the portfolio that contains the product.

3. Expand Constraints and choose Add constraints.

4. Choose the product from Product and set Constraint type to Launch. Choose Continue.

5. For IAM role, choose the launch role. Choose Submit.

Verify That the Launch Constraint Is Applied

Verify that AWS Service Catalog uses the role to launch the product and that the provisioned product is created successfully by launching the product from the AWS Service Catalog console. To test a constraint prior to releasing it to users, create a test portfolio that contains the same products and test the constraints with that portfolio.

To launch the product

1. In the menu for the AWS Service Catalog console, choose Service Catalog, End user.

2. Choose the product to open the Product details page. In the Launch options table, verify that the Amazon Resource Name (ARN) of the role appears.

3. Choose Launch product.

4. Proceed through the launch steps, filling in any required information.

5. Verify that the product starts successfully.

AWS Service Catalog Notification Constraints

A notification constraint specifies an Amazon SNS topic to receive notifications about stack events. The SNS topic specifies the email address to receive the notifications.

Use the following procedure to create an SNS topic and subscribe to it.

To create an SNS topic and a subscription

1. Open the Amazon SNS console at https://console.aws.amazon.com/sns/v3/home.

2. Choose Create topic.

3. Type a topic name and then choose Create topic.

4. Choose Create subscription.

5. For Protocol, select Email. For Endpoint, type an email address that you can use to receive notifications. Choose Create subscription.

6. You'll receive a confirmation email with the subject line AWS Notification - Subscription Confirmation. Open the email and follow the directions to complete your subscription.

[image: image95.png]

33

AWS Service Catalog Administrator Guide

Resource Update Constraints

[image: image96.png]

Use the following procedure to apply a notification constraint using the SNS topic that you created using the previous procedure.

To apply a notification constraint to a product

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose the portfolio that contains the product.

3. Expand Constraints and choose Add constraints.

4. Choose the product from Product and set Constraint type to Notification. Choose Continue.

5. Choose Choose a topic from your account and select the SNS topic that you created from Topic Name.

6. Choose Submit.

AWS Service Catalog Resource Update Constraints

With resource update constraints, AWS Service Catalog administrators can allow or disallow end users to make updates to AWS Service Catalog resources in a provisioned product. AWS Service Catalog currently supports a resource update constraint for tag updating.

To enable tag updates to a product

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose the portfolio that contains the product.

3. Expand Constraints and choose Add constraints.

4. Choose the product from Product and set Constraint type to Resource Update. Choose Continue.

5. On the Resource update constraint page, under Tag Updates, select Enable Tag Updates.

6. Choose Submit.

AWS Service Catalog Stack Set Constraints

Note

This feature is currently in beta mode. AutoTags are not currently supported with AWS CloudFormation StackSets.

A stack set constraint allows you to configure product deployment options using AWS CloudFormation StackSets. You can specify multiple accounts and regions for the product launch.

To apply a stack set constraint to a product

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose the portfolio that contains the product.

3. Expand Constraints and choose Add constraints.

4. Choose the product from Product and set Constraint type to Stack Set. Choose Continue.

5. On the Stack Set constraint page, enter a description.

6. Choose the account(s) in which you want to create products.

7. Choose the region(s) in which you want to deploy products. Products are deployed in these regions in the order that you specify.

8. Choose an IAM StackSet Administrator Role that will be used to manage your target accounts. If you don't choose a role, StackSets will use the default ARN. Learn more about setting up stack set permissions.
[image: image97.png]

34

AWS Service Catalog Administrator Guide

Template Constraints

[image: image98.png]

9. Choose Submit.

AWS Service Catalog Template Constraints

To limit the options that are available to end users when they launch a product, you apply template constraints. Apply template constraints to ensure that the end users can use products without breaching the compliance requirements of your organization. You apply template constraints to a product in an AWS Service Catalog portfolio. A portfolio must contain one or more products before you can define template constraints.

A template constraint consists of one or more rules that narrow the allowable values for parameters that are defined in the product's underlying AWS CloudFormation template. The parameters in an AWS CloudFormation template define the set of values that users can specify when creating a stack. For example, a parameter might define the various instance types that users can choose from when launching a stack that includes EC2 instances.

If the set of parameter values in a template is too broad for the target audience of your portfolio, you can define template constraints to limit the values that users can choose when launching a product. For example, if the template parameters include EC2 instance types that are too large for users who should use only small instance types (such as t2.micro or t2.small), then you can add a template constraint to limit the instance types that end users can choose. For more information about AWS CloudFormation template parameters, see Parameters in the AWS CloudFormation User Guide.

Template constraints are bound within a portfolio. If you apply template constraints to a product in one portfolio, and if you then include the product in another portfolio, the constraints will not apply to the product in the second portfolio.

If you apply a template constraint to a product that has already been shared with users, the constraint is active immediately for all subsequent product launches and for all versions of the product in the portfolio.

You define template constraint rules by using a rule editor or by writing the rules as JSON text in the AWS Service Catalog administrator console. For more information about rules, including syntax and examples, see Template Constraint Rules (p. 36).

To test a constraint prior to releasing it to users, create a test portfolio that contains the same products and test the constraints with that portfolio.

To apply template constraints to a product

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. On the Portfolios page, choose the portfolio that contains the product to which you want to apply a template constraint.

3. Expand the Constraints section and choose Add constraints.

4. In the Select product and type window, for Product choose the product for which you want to define the template constraints. Then, for Constraint type, choose Template. Choose Continue.

5. On the Template constraint builder page, edit the constraint rules by using the JSON editor or the rule builder interface.

· To edit the JSON code for the rule, choose the Constraint Text Editor tab. Several samples are provided on this tab to help you get started.

To build the rules by using a rule builder interface, choose the Rule Builder tab. On this tab, you can choose any parameter that is specified in the template for the product, and you can specify the allowable values for that parameter. Depending on the type of parameter, you specify the allowable values by choosing items in a checklist, by specifying a number, or by specifying a set of values in a comma-separated list.

[image: image99.png]

35

AWS Service Catalog Administrator Guide

Template Constraints

[image: image100.png]

When you have finished building a rule, choose Add rule. The rule appears in the table on the Rule Builder tab. To review and edit the JSON output, choose the Constraint Text Editor tab.

6. When you are done editing the rules for your constraint, choose Submit. To see the constraint, go to the portfolio details page and expand Constraints.

Template Constraint Rules

The rules that define template constraints in an AWS Service Catalog portfolio describe when end users can use the template and which values they can specify for parameters that are declared in the AWS CloudFormation template used to create the product they are attempting to use. Rules are useful for preventing end users from inadvertently specifying an incorrect value. For example, you can add a rule to verify whether end users specified a valid subnet in a given VPC or used m1.small instance types for test environments. AWS CloudFormation uses rules to validate parameter values before it creates the resources for the product.

Each rule consists of two properties: a rule condition (optional) and assertions (required). The rule condition determines when a rule takes eﬀect. The assertions describe what values users can specify for a particular parameter. If you don't define a rule condition, the rule's assertions always take eﬀect. To define a rule condition and assertions, you use rule-specific intrinsic functions, which are functions that can only be used in the Rules section of a template. You can nest functions, but the final result of a rule condition or assertion must be either true or false.

As an example, assume that you declared a VPC and a subnet parameter in the Parameters section. You can create a rule that validates that a given subnet is in a particular VPC. So when a user specifies a VPC, AWS CloudFormation evaluates the assertion to check whether the subnet parameter value is in that VPC before creating or updating the stack. If the parameter value is invalid, AWS CloudFormation immediately fail to create or update the stack. If users don't specify a VPC, AWS CloudFormation doesn't check the subnet parameter value.

Syntax

The Rules section of a template consists of the key name Rules, followed by a single colon. Braces enclose all rule declarations. If you declare multiple rules, they are delimited by commas. For each rule, you declare a logical name in quotation marks followed by a colon and braces that enclose the rule condition and assertions.

A rule can include a RuleCondition property and must include an Assertions property. For each rule, you can define only one rule condition; you can define one or more asserts within the Assertions property. You define a rule condition and assertions by using rule-specific intrinsic functions, as shown in the following pseudo template:

[image: image101.png]

"Rules" : {

"Rule01" : {

"RuleCondition" : { Rule-specific intrinsic function },

"Assertions" : [

{

"Assert" : { Rule-specific intrinsic function },

"AssertDescription" : "Information about this assert"

},

{

"Assert" : { Rule-specific intrinsic function },

"AssertDescription" : "Information about this assert"

}

]

},

"Rule02" : {

"Assertions" : [

[image: image102.png]

36

AWS Service Catalog Administrator Guide

Template Constraints

[image: image103.png]

{

[image: image104.png]

"Assert" : { Rule-specific intrinsic function },

"AssertDescription" : "Information about this assert"

}

]

}

}

The pseudo template shows a Rules section containing two rules named Rule01 and Rule02. Rule01 includes a rule condition and two assertions. If the function in the rule condition evaluates to true, both functions in each assert are evaluated and applied. If the rule condition is false, the rule doesn't take eﬀect. Rule02 always takes eﬀect because it doesn't have a rule condition, which means the one assert is always evaluated and applied.

You can use the following rule-specific intrinsic functions to define rule conditions and assertions:

· Fn::And

· Fn::Contains

· Fn::EachMemberEquals

· Fn::EachMemberIn

· Fn::Equals

· Fn::If

· Fn::Not

· Fn::Or

· Fn::RefAll

· Fn::ValueOf

· Fn::ValueOfAll

Example: Conditionally Verify a Parameter Value

The following two rules check the value of the InstanceType parameter. Depending on the value of the Environment parameter (test or prod), the user must specify m1.small or m1.large for the InstanceType parameter. The InstanceType and Environment parameters must be declared in the Parameters section of the same template.

[image: image105.png]

"Rules" : {

"testInstanceType" : {

"RuleCondition" : {"Fn::Equals":[{"Ref":"Environment"}, "test"]},

"Assertions" : [

{

"Assert" :
{ "Fn::Contains" : [["m1.small"], {"Ref" : "InstanceType"}] },

"AssertDescription" : "For the test environment, the instance type must be m1.small"

}

]

},

"prodInstanceType" : {

"RuleCondition" : {"Fn::Equals":[{"Ref":"Environment"}, "prod"]},

"Assertions" : [

{

"Assert" :
{ "Fn::Contains" : [["m1.large"], {"Ref" : "InstanceType"}] },

"AssertDescription" : "For the prod environment, the instance type must be m1.large"

}

]

}

}

[image: image106.png]

37

AWS Service Catalog Administrator Guide

Template Constraints

[image: image107.png]

AWS Service Catalog Rule Functions

In the condition or assertions of a rule, you can use intrinsic functions, such as Fn::Equals, Fn::Not, and Fn::RefAll. The condition property determines if AWS CloudFormation applies the assertions. If the condition evaluates to true, AWS CloudFormation evaluates the assertions to verify whether

a parameter value is valid when a provisioned product is created or updated. If a parameter values is invalid, AWS CloudFormation does not create or update the stack. If the condition evaluates to false, AWS CloudFormation doesn't check the parameter value and proceeds with the stack operation.

Functions

· Fn::And (p. 38)
· Fn::Contains (p. 38)
· Fn::EachMemberEquals (p. 39)
· Fn::EachMemberIn (p. 39)
· Fn::Equals (p. 40)
· Fn::Not (p. 40)
· Fn::Or (p. 41)
· Fn::RefAll (p. 41)
· Fn::ValueOf (p. 42)
· Fn::ValueOfAll (p. 42)
· Supported Functions (p. 43)
· Supported Attributes (p. 43)
Fn::And

Returns true if all the specified conditions evaluate to true; returns false if any one of the conditions evaluates to false. Fn::And acts as an AND operator. The minimum number of conditions that you can include is two, and the maximum is ten.

Declaration

[image: image108.png]

"Fn::And" : [{condition}, {...}]

Parameters

condition

A rule-specific intrinsic function that evaluates to true or false.

Example

The following example evaluates to true if the referenced security group name is equal to sg-mysggroup and if the InstanceType parameter value is either m1.large or m1.small:

[image: image109.png]

"Fn::And" : [

{"Fn::Equals" : ["sg-mysggroup", {"Ref" : "ASecurityGroup"}]},

{"Fn::Contains" : [["m1.large", "m1.small"], {"Ref" : "InstanceType"}]}

]

Fn::Contains

Returns true if a specified string matches at least one value in a list of strings.

[image: image110.png]

38

AWS Service Catalog Administrator Guide

Template Constraints

[image: image111.png]

Declaration

[image: image112.png]

"Fn::Contains" : [[list_of_strings], string]

Parameters

list_of_strings

A list of strings, such as "A", "B", "C".

string

A string, such as "A", that you want to compare against a list of strings.

Example

The following function evaluates to true if the InstanceType parameter value is contained in the list (m1.large or m1.small):

[image: image113.png]

"Fn::Contains" : [

["m1.large", "m1.small"], {"Ref" : "InstanceType"}

]

Fn::EachMemberEquals

Returns true if a specified string matches all values in a list.

Declaration

[image: image114.png]

"Fn::EachMemberEquals" : [[list_of_strings], string]

Parameters

list_of_strings

A list of strings, such as "A", "B", "C".

string

A string, such as "A", that you want to compare against a list of strings.

Example

The following function returns true if the Department tag for all parameters of type

AWS::EC2::VPC::Id have a value of IT:

[image: image115.png]

"Fn::EachMemberEquals" : [

{"Fn::ValueOfAll" : ["AWS::EC2::VPC::Id", "Tags.Department"]}, "IT"

]

Fn::EachMemberIn

Returns true if each member in a list of strings matches at least one value in a second list of strings.

Declaration

[image: image116.png]

"Fn::EachMemberIn" : [[strings_to_check], strings_to_match]

[image: image117.png]

39

AWS Service Catalog Administrator Guide

Template Constraints

[image: image118.png]

Parameters

strings_to_check

A list of strings, such as "A", "B", "C". AWS CloudFormation checks whether each member in the strings_to_check parameter is in the strings_to_match parameter.

strings_to_match

A list of strings, such as "A", "B", "C". Each member in the strings_to_match parameter is compared against the members of the strings_to_check parameter.

Example

The following function checks whether users specify a subnet that is in a valid virtual private cloud (VPC). The VPC must be in the account and the region in which users are working with the stack. The function applies to all parameters of type AWS::EC2::Subnet::Id.

[image: image119.png]

"Fn::EachMemberIn" : [

{"Fn::ValueOfAll" : ["AWS::EC2::Subnet::Id", "VpcId"]}, {"Fn::RefAll" :

"AWS::EC2::VPC::Id"}

]

Fn::Equals

Compares two values to determine whether they are equal. Returns true if the two values are equal and false if they aren't.

Declaration

[image: image120.png]

"Fn::Equals" : ["value_1", "value_2"]

Parameters

value

A value of any type that you want to compare with another value.

Example

The following example evaluates to true if the value for the EnvironmentType parameter is equal to prod:

[image: image121.png]

"Fn::Equals" : [{"Ref" : "EnvironmentType"}, "prod"]

Fn::Not

Returns true for a condition that evaluates to false, and returns false for a condition that evaluates to true. Fn::Not acts as a NOT operator.

Declaration

[image: image122.png]

"Fn::Not" : [{condition}]

[image: image123.png]

40

AWS Service Catalog Administrator Guide

Template Constraints

[image: image124.png]

Parameters

condition

A rule-specific intrinsic function that evaluates to true or false.

Example

The following example evaluates to true if the value for the EnvironmentType parameter is not equal to prod:

[image: image125.png]

"Fn::Not" : [{"Fn::Equals" : [{"Ref" : "EnvironmentType"}, "prod"]}]

Fn::Or

Returns true if any one of the specified conditions evaluates to true; returns false if all of the conditions evaluate to false. Fn::Or acts as an OR operator. The minimum number of conditions that you can include is two, and the maximum is ten.

Declaration

[image: image126.png]

"Fn::Or" : [{condition}, {...}]

Parameters

condition

A rule-specific intrinsic function that evaluates to true or false.

Example

The following example evaluates to true if the referenced security group name is equal to sg-mysggroup or if the InstanceType parameter value is either m1.large or m1.small:

[image: image127.png]

"Fn::Or" : [

{"Fn::Equals" : ["sg-mysggroup", {"Ref" : "ASecurityGroup"}]},

{"Fn::Contains" : [["m1.large", "m1.small"], {"Ref" : "InstanceType"}]}

]

Fn::RefAll

Returns all values for a specified parameter type.

Declaration

[image: image128.png]

"Fn::RefAll" : "parameter_type"

Parameters

parameter_type

An AWS-specific parameter type, such as AWS::EC2::SecurityGroup::Id or AWS::EC2::VPC::Id. For more information, see Parameters in the AWS CloudFormation User Guide.

[image: image129.png]

41

AWS Service Catalog Administrator Guide

Template Constraints

[image: image130.png]

Example

The following function returns a list of all VPC IDs for the region and AWS account in which the stack is being created or updated:

[image: image131.png]

"Fn::RefAll" : "AWS::EC2::VPC::Id"

Fn::ValueOf

Returns an attribute value or list of values for a specific parameter and attribute.

Declaration

[image: image132.png]

"Fn::ValueOf" : ["parameter_logical_id", "attribute"]

Parameters

attribute

The name of an attribute from which you want to retrieve a value. For more information about attributes, see Supported Attributes (p. 43).

parameter_logical_id

The name of a parameter for which you want to retrieve attribute values. The parameter must be declared in the Parameters section of the template.

Examples

The following example returns the value of the Department tag for the VPC that is specified by the

ElbVpc parameter:

[image: image133.png]

"Fn::ValueOf" : ["ElbVpc", "Tags.Department"]

If you specify multiple values for a parameter, the Fn::ValueOf function can return a list. For example, you can specify multiple subnets and get a list of Availability Zones where each member is the Avalibility Zone of a particular subnet:

[image: image134.png]

"Fn::ValueOf" : ["ListOfElbSubnets", "AvailabilityZone"]

Fn::ValueOfAll

Returns a list of all attribute values for a given parameter type and attribute.

Declaration

[image: image135.png]

"Fn::ValueOfAll" : ["parameter_type", "attribute"]

Parameters

attribute

The name of an attribute from which you want to retrieve a value. For more information about attributes, see Supported Attributes (p. 43).

parameter_type

An AWS-specific parameter type, such as AWS::EC2::SecurityGroup::Id or AWS::EC2::VPC::Id. For more information, see Parameters in the AWS CloudFormation User Guide.

[image: image136.png]

42

AWS Service Catalog Administrator Guide

Using Self-Service Actions

[image: image137.png]

Example

In the following example, the Fn::ValueOfAll function returns a list of values, where each member is the Department tag value for VPCs with that tag:

[image: image138.png]

"Fn::ValueOfAll" : ["AWS::EC2::VPC::Id", "Tags.Department"]

Supported Functions

You cannot use another function within the Fn::ValueOf and Fn::ValueOfAll functions. However, you can use the following functions within all other rule-specific intrinsic functions:

· Ref

· Other rule-specific intrinsic functions

Supported Attributes

The following list describes the attribute values that you can retrieve for specific resources and parameter types:

The AWS::EC2::VPC::Id parameter type or VPC IDs

· DefaultNetworkAcl

· DefaultSecurityGroup

· Tags.tag_key
The AWS::EC2::Subnet::Id parameter type or subnet IDs

· AvailabilityZone

· Tags.tag_key
· VpcId

The AWS::EC2::SecurityGroup::Id parameter type or security group IDs

· Tags.tag_key
AWS Service Catalog Self-Service Actions

AWS Service Catalog enables you to reduce administrative maintenance and end-user training while adhering to compliance and security measures. With self-service actions, as the administrator you can enable end users to perform operational tasks, troubleshoot issues, run approved commands, or request permissions in AWS Service Catalog. You use AWS Systems Manager documents to define self-service actions. The AWS Systems Manager documents provide access to pre-defined actions that implement AWS best practices, such as Amazon EC2 stop and reboot, and you can define custom actions too.

In this tutorial, you provide end users with the ability to restart an Amazon EC2 instance. You add the necessary permissions, define the self-service action, associate the self-service action with a product, and test the end user experience using the action with a provisioned product.

Prerequisites

This tutorial assumes that you have full AWS administrator permissions, you are already familiar with AWS Service Catalog, and that you already have a base set of products, portfolios, and users. If you are

[image: image139.png]

43

AWS Service Catalog Administrator Guide

Step 1: Configure End-User Permissions

[image: image140.png]

not familiar with AWS Service Catalog, complete the Setting Up (p. 6) and Getting Started (p. 10) tasks before using this tutorial.

Topics

· Step 1: Configure End-User Permissions (p. 44)
· Step 2: Create a Self-Service Action (p. 45)
· Step 3: Associate the Self-Service Action with a Product Version (p. 45)
· Step 4: Test the End-User Experience (p. 45)
Step 1: Configure End-User Permissions

End-user accounts must have the necessary permissions to view and perform specific service actions. In this example, the end user needs permission to access the AWS Service Catalog service actions feature and to perform an Amazon EC2 restart.

To update permissions

1. Open the AWS Identity and Access Management (IAM) console at https://console.aws.amazon.com/ iam/.
2. From the menu, choose Groups.

3. On the Groups page, select the groups used by end users to access AWS Service Catalog resources. In this example, we select the end user group. In your own implementation, choose the group that is used by the relevant end users.

4. On the Permissions tab of your group’s detail page, you either create a new policy or edit an existing policy. In this example, we add permissions to the existing policy by selecting the custom policy created for the group’s AWS Service Catalog Provision and Terminate permissions.

5. On the Policy page, choose Edit Policy to add the necessary permissions. You can use either the visual editor or the JSON editor to edit the policy. In this example, we use the JSON editor to add the permissions. For this tutorial, add the following permissions to the policy:

[image: image141.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "Stmt1536341175150",

"Action": [

"servicecatalog:ListServiceActionsForProvisioningArtifact",

"servicecatalog:ExecuteprovisionedProductServiceAction",

"ssm:DescribeDocument",

"ssm:GetAutomationExecution",

"ssm:StartAutomationExecution",

"ssm:StopAutomationExecution",

"cloudformation:ListStackResources",

"ec2:DescribeInstanceStatus",

"ec2:StartInstances",

"ec2:StopInstances"

],

"Effect": "Allow",

"Resource": "*"

}

]

}

6. After you edit the policy, review and approve the change to the policy. Users in the end user group now have the necessary permissions to perform the Amazon EC2 restart action in AWS Service Catalog.

[image: image142.png]

44

AWS Service Catalog Administrator Guide

Step 2: Create a Self-Service Action

[image: image143.png]

Step 2: Create a Self-Service Action

Next, you create a self-service action to restart Amazon EC2 instances.

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/sc/.

2. From the menu, choose Service actions.

3. On the self-service actions page, choose Create new action.

4. On the Action creation page, choose an AWS Systems Manager document to define the self-service action. The Amazon EC2 Instance Restart action is defined by an AWS Systems Manager document, so we keep the default option on the drop-down menu, Amazon documents.

5. Choose the AWS-RestartEC2Instance action, and then choose Next.

6. On the Configure page, keep the default configuration values for the purposes of this tutorial. Note that you can define a name and description for the action that make sense for your environment and team. The end user will see this description, so choose something that helps them understand what the action does. We are also using default permissions for the self-service action. Other permission configurations are possible and are defined on this page.

7. After you have reviewed the configuration, choose Create action.

8. On the next page, a confirmation appears when the action has been created and is ready to use.

Step 3: Associate the Self-Service Action with a Product Version

After you define an action, you must associate a product with that action.

1. On the self-service actions page, choose AWS-RestartEC2instance, and then choose Associate action.

2. On the Associate action page, choose the product that you want your end users to take the self-service action on. In this example, we choose Linux Desktop.

3. Select a product version. Note that you can use the topmost check box to select all versions.

4. Choose Associate action.

5. On the next page, a confirmation message appears.

You have now created the self-service action in AWS Service Catalog. The next step of this tutorial is to use the service action as an end user.

Step 4: Test the End-User Experience

End users can perform self-service actions on provisioned products. For the purposes of this tutorial, the end user must have at least one provisioned product. The provisioned product should be launched from the product version that you associated with the self-service action in the previous step.

To access the self-service action as an end user

1. Log in to the AWS Service Catalog console as an end user.

2. On the AWS Service Catalog dashboard, in the navigation pane, choose Provisioned products list. The list shows the products that are provisioned for the end-user's account.

3. On the Provisioned products list page, choose the instance that is provisioned.

4. On the Provisioned product details page, choose Actions in the upper right side, and then choose the AWS-RestartEC2instance action.

[image: image144.png]

45

AWS Service Catalog Administrator Guide

Adding AWS Marketplace Products to Your Portfolio

[image: image145.png]

5. Confirm that you want to execute the custom action. You receive confirmation that the action has been sent.

Adding AWS Marketplace Products to Your Portfolio

You can add AWS Marketplace products to your portfolios to make those products available to your AWS Service Catalog end users.

AWS Marketplace is an online store in which you can find, subscribe to, and immediately start using a large selection of software and services. The types of products in AWS Marketplace include databases, application servers, testing tools, monitoring tools, content management tools, and business intelligence software. AWS Marketplace is available at https://aws.amazon.com/marketplace.

You distribute an AWS Marketplace product to AWS Service Catalog end users by defining the product in an AWS CloudFormation template and adding the template to a portfolio. Any end user who has access to the portfolio will be able to launch the product from the console.

AWS Marketplace supports AWS Service Catalog directly or subscribe and add products using the manual option. We recommend adding products using the functionality specifically designed for AWS Service Catalog.

Managing AWS Marketplace Products Using AWS Service Catalog

You can add your subscribed AWS Marketplace products directly to AWS Service Catalog using a custom interface. In AWS Marketplace, choose Service Catalog. For more information, see Copying Products to AWS Service Catalog in the AWS Marketplace Help and FAQ.

Managing and Adding AWS Marketplace Products Manually

Complete the following steps to subscribe to an AWS Marketplace product, define that product in an AWS CloudFormation template, and add the template to an AWS Service Catalog portfolio.

To subscribe to an AWS Marketplace product

1. Go to AWS Marketplace at https://aws.amazon.com/marketplace.

2. Browse the products or search to find the product that you want to add to your AWS Service Catalog portfolio. Choose the product to view the product details page.

3. Choose Continue to view the fulfillment page, and then choose the Manual Launch tab.

The information on the fulfillment page includes the supported Amazon Elastic Compute Cloud (Amazon EC2) instance types, the supported AWS regions, and the Amazon Machine Image (AMI) ID that the product uses for each AWS region. Note that some choices will aﬀect cost. You will use this information to customize the AWS CloudFormation template in later steps.

4. Choose Accept Terms to subscribe to the product.

After you subscribe to a product, you can access the information on the product fulfillment page in AWS Marketplace at any time by choosing Your Software, and then choosing the product.

[image: image146.png]

46

AWS Service Catalog Administrator Guide

Managing and Adding AWS Marketplace Products Manually

[image: image147.png]

To define your AWS Marketplace product in an AWS CloudFormation template

To complete the following steps, you will use one of the AWS CloudFormation sample templates as a starting point, and you will customize the template so that it represents your AWS Marketplace product. To access the sample templates, see Sample Templates in the AWS CloudFormation User Guide.

1. On the Sample Templates page in the AWS CloudFormation User Guide, choose a region that your product will be used in. The region must be supported by your AWS Marketplace product. You can view the supported regions on the product fulfillment page in AWS Marketplace.

2. To view a list of service sample templates that are appropriate for the region, choose the Services link.

3. You can use any of the samples that are appropriate for your needs as a starting point. The steps in this procedure use the Amazon EC2 instance in a security group template. To view the sample template, choose View , and then save a copy of the template locally so that you can edit it. Your local file must have the .template extension.

4. Open your template file in a text editor.

5. Customize the description at the top of the template. Your description might look like the following example:

"Description": "Launches a LAMP stack from AWS Marketplace",

6. Customize the InstanceType parameter so that it includes only EC2 instance types that are supported by your product. If your template includes unsupported EC2 instance types, the product will fail to launch for your end users.

a. On the product fulfillment page in AWS Marketplace, view the supported EC2 instance types in the Pricing Details section, as in the following example:

[image: image148.png]

47

AWS Service Catalog Administrator Guide

Managing and Adding AWS Marketplace Products Manually

[image: image149.png]tmicro
i smal
1 medum
mlarge
i xarge
m2 xarge
m2 2xiarge
m2 4xtarge
ct medum
ct xarge
hit 4xiarge
hs1 Bxarge
3 medum
m3arge
3 xarge
m3 2xiarge
calarge
caxarge
c3.2xtarge
c3.4xtarge
3 6xtarge

b. In your template, change the default instance type to a supported EC2 instance type of your choice.

c. Edit the AllowedValues list so that it includes only EC2 instance types that are supported by your product.

d. Remove any EC2 instance types that you do not want your end users to use when they launch the product from the AllowedValueslist .

When you are done editing the InstanceType parameter, it might look similar to the following example:

[image: image150.png]

"InstanceType" : {

[image: image151.png]

48

AWS Service Catalog Administrator Guide

Managing and Adding AWS Marketplace Products Manually

[image: image152.png]

"Description" : "EC2 instance type",

[image: image153.png]

"Type" : "String",

"Default" : "m1.small",

"AllowedValues" : ["t1.micro", "m1.small", "m1.medium", "m1.large", "m1.xlarge", "m2.xlarge", "m2.2xlarge", "m2.4xlarge", "c1.medium", "c1.xlarge", "c3.large", "c3.large", "c3.xlarge", "c3.xlarge", "c3.4xlarge", "c3.8xlarge"],

"ConstraintDescription" : "Must be a valid EC2 instance type."

},

7. In the Mappings section of your template, edit the AWSInstanceType2Arch mappings so that only supported EC2 instance types and architectures are included.

a. Edit the list of mappings by removing all EC2 instance types that are not included in the AllowedValues list for the InstanceType parameter.

b. Edit the Arch value for each EC2 instance type to be the architecture type that is supported by your product. Valid values are PV64, HVM64, and HVMG2. To learn which architecture your product supports, refer to the product details page in AWS Marketplace. To learn which architectures are supported by EC2 instance families, see Amazon Linux AMI Instance Type Matrix.
When you have finished editing the AWSInstanceType2Arch mappings, it might look similar to the following example:

[image: image154.png]

"AWSInstanceType2Arch" : {

"t1.micro"
: { "Arch" : "PV64"
},

"m1.small"
: { "Arch" : "PV64"
},

"m1.medium"
: { "Arch" : "PV64"
},

"m1.large"
: { "Arch" : "PV64"
},

"m1.xlarge"
: { "Arch" : "PV64"
},

"m2.xlarge"
: { "Arch" : "PV64"
},

"m2.2xlarge"
: { "Arch" : "PV64"
},

"m2.4xlarge"
: { "Arch" : "PV64"
},

"c1.medium"
: { "Arch" : "PV64"
},

"c1.xlarge"
: { "Arch" : "PV64"
},

"c3.large"
: { "Arch" : "PV64"
},

"c3.xlarge"
: { "Arch" : "PV64"
},

"c3.2xlarge"
: { "Arch" : "PV64"
},

"c3.4xlarge"
: { "Arch" : "PV64"
},

"c3.8xlarge"
: { "Arch" : "PV64"
}

}

,

8. In the Mappings section of your template, edit the AWSRegionArch2AMI mappings to associate each AWS region with the corresponding architecture and AMI ID for your product.

a. On the product fulfillment page in AWS Marketplace, view the AMI ID that your product uses for each AWS region, as in the following example:

[image: image155.png]

49

AWS Service Catalog Administrator Guide

Managing and Adding AWS Marketplace Products Manually

[image: image156.png]

[image: image157.jpg]Region D
US East (N. Virginia) ami-4

US West (Oregon) ami- M
US West (N. California) ami-b
U (Franin) amiw

EU (reland) i
Asia Pacific (Singapore) PLESNl L 2unch with EC2 Console:
Asia Pacific (Sydney) ELIRNMl L 2unch with EC2 Console

Asia Pacifc (Tokyo) A

South America (Sao Paulo) ami-mnns [ET

with EC2 Console.

b. In your template, remove the mappings for any regions that you do not support.

c. Edit the mapping for each region to remove the unsupported architectures (PV64, HVM64, or HVMG2) and their associated AMI IDs.

d. For each remaining region and architecture mapping, specify the corresponding AMI ID from the product details page in AWS Marketplace.

When you have finished editing the AWSRegionArch2AMI mappings, your code might look similar to the following example:

[image: image158.png]

"AWSRegionArch2AMI" : {

"us-east-1"
: {"PV64" : "ami-nnnnnnnn"},

"us-west-2"
: {"PV64" : "ami-nnnnnnnn"},

"us-west-1"
: {"PV64" : "ami-nnnnnnnn"},

"eu-west-1"
: {"PV64" : "ami-nnnnnnnn"},

"eu-central-1"
: {"PV64" : "ami-nnnnnnnn"},

"ap-northeast-1"
: {"PV64" : "ami-nnnnnnnn"},

"ap-southeast-1"
: {"PV64" : "ami-nnnnnnnn"},

"ap-southeast-2"
: {"PV64" : "ami-nnnnnnnn"},

"sa-east-1"
: {"PV64" : "ami-nnnnnnnn"}

}

You can now use the template to add the product to an AWS Service Catalog portfolio. If you want to make additional changes, see Working with AWS CloudFormation Templates to learn more about templates.

To add your AWS Marketplace product to an AWS Service Catalog portfolio

1. Sign in to the AWS Management Console and navigate to the AWS Service Catalog administrator console at https://console.aws.amazon.com/servicecatalog/.

2. On the Portfolios page, choose the portfolio that you want to add your AWS Marketplace product to.

3. On the portfolio details page, choose Upload new product.

4. Type the requested product and support details.

5. On the Version details page, choose Upload a template file, choose Browse, and then choose your template file.

6. Type a version title and description.

[image: image159.png]

50

AWS Service Catalog Administrator Guide

Portfolio Sharing

[image: image160.png]

7. Choose Next.

8. On the Review page, verify that the summary is accurate, and then choose Confirm and upload. The product is added your portfolio. It is now available to end users who have access to the portfolio.

Portfolio Sharing

To make your AWS Service Catalog products available to users who are not in your AWS account, such as users who belong to other organizations or to other AWS accounts in your organization, you share your portfolios with their AWS accounts.

When you share a portfolio, you allow an AWS Service Catalog administrator of another AWS account to import your portfolio into his or her account and distribute the products to end users in that account. This imported portfolio isn't an independent copy. The products and constraints in the imported portfolio stay in sync with changes that you make to the shared portfolio, the original portfolio that you shared. The recipient administrator, the administrator with whom you share a portfolio, cannot change the products or constraints, but can add AWS Identity and Access Management (IAM) access for end users. For more information, see Granting Access to Users (p. 27).

The recipient administrator can distribute the products to end users who belong to his or her AWS account in the following ways:

· By adding IAM users, groups, and roles to the imported portfolio.

· By adding products from the imported portfolio to a local portfolio, a separate portfolio that the recipient administrator creates and that belongs to his or her AWS account. The recipient administrator then adds IAM users, groups, and roles to the local portfolio. The constraints that you applied to the products in the shared portfolio are also present in the local portfolio. The recipient administrator can add additional constraints to the local portfolio, but cannot remove the imported constraints.

When you add products or constraints to the shared portfolio or remove products or constraints from it, the change propagates to all imported instances of the portfolio. For example, if you remove a product from the shared portfolio, that product is also removed from the imported portfolio. It is also removed from all local portfolios that the imported product was added to. If an end user launched a product before you removed it, the end user's provisioned product continues to run, but the product becomes unavailable for future launches.

If you apply a launch constraint to a product in a shared portfolio, it propagates to all imported instances of the product. To override this launch constraint, the recipient administrator adds the product to a local portfolio and then applies a diﬀerent launch constraint to it. The launch constraint that is in eﬀect sets a launch role for the product. A launch role is an IAM role that AWS Service Catalog uses to provision AWS resources (such as EC2 instances or RDS databases) when an end user launches the product. This launch role is used even if the end user belongs to a diﬀerent AWS account than the one that owns the launch role. For more information about launch constraints and launch roles, see AWS Service Catalog Launch Constraints (p. 31). The AWS account that owns the launch role provisions the AWS resources, and this account incurs the usage charges for those resources. For more information, see AWS Service Catalog Pricing.

Note

You cannot re-share products from a portfolio that has been imported or shared.

Relationship Between Shared and Imported Portfolios

The following table summarizes the relationship between an imported portfolio and a shared portfolio and the actions that an administrator who imports a portfolio can and can't take with that portfolio and the products in it.

[image: image161.png]

51

AWS Service Catalog Administrator Guide

Relationship Between Shared and Imported Portfolios

[image: image162.png]

	Element of Shared
	Relationship to
	Recipient
	Recipient

	Portfolio
	Imported Portfolio
	Administrator Can
	Administrator Cannot

	
	
	
	

	Products and product
	Inherited.
	Add imported products
	Upload or add products

	versions
	If the portfolio creator
	to local portfolios.
	to the imported

	
	
	Products stay in sync
	portfolio or remove

	
	adds products to or
	with shared portfolio.
	products from the

	
	removes products from
	
	imported portfolio.

	
	the shared portfolio,
	
	

	
	the change propagates
	
	

	
	to the imported
	
	

	
	portfolio.
	
	

	
	
	
	

	Launch constraints
	Inherited.
	In a local portfolio,
	Add launch constraints

	
	If the portfolio creator
	the administrator can
	to or remove launch

	
	
	override the imported
	constraints from the

	
	adds launch constraints
	launch constraint by
	imported portfolio.

	
	to or removes launch
	applying a diﬀerent one
	

	
	constraints from a
	to the product.
	

	
	shared product, the
	
	

	
	change propagates to
	
	

	
	all imported instances
	
	

	
	of the product.
	
	

	
	If the recipient
	
	

	
	administrator adds
	
	

	
	an imported product
	
	

	
	to a local portfolio,
	
	

	
	the imported launch
	
	

	
	constraint that is
	
	

	
	applied to that product
	
	

	
	is present in the local
	
	

	
	portfolio.
	
	

	
	
	
	

	Template constraints
	Inherited.
	In a local portfolio,
	Remove the imported

	
	If the portfolio creator
	the administrator
	template constraints.

	
	
	can add template
	

	
	adds a template
	constraints that take
	

	
	constraint to or
	eﬀect in addition to the
	

	
	removes a template
	imported constraints.
	

	
	constraints from a
	
	

	
	shared product, the
	
	

	
	change propagates to
	
	

	
	all imported instances
	
	

	
	of the product.
	
	

	
	If the recipient
	
	

	
	administrator adds an
	
	

	
	imported product to
	
	

	
	a local portfolio, the
	
	

	
	imported template
	
	

	
	constraints that are
	
	

	
	applied to that product
	
	

	
	are inherited by the
	
	

	
	local portfolio.
	
	

	
	
	
	

	IAM users, groups, and
	Not inherited.
	Add IAM users, groups,
	Not applicable.

	roles
	
	and roles that are in
	

[image: image163.png]

52

AWS Service Catalog Administrator Guide

Sharing a Portfolio

[image: image164.png]

	Element of Shared
	Relationship to
	Recipient
	Recipient

	Portfolio
	Imported Portfolio
	Administrator Can
	Administrator Cannot

	
	
	
	

	
	
	administrator's AWS
	

	
	
	account.
	

	
	
	
	

Sharing a Portfolio

To enable an AWS Service Catalog administrator for another AWS account to distribute your products to end users, share your AWS Service Catalog portfolio with that administrator's AWS account.

To complete these steps, you must obtain the account ID of the target AWS account. The ID is provided on the My Account page in the AWS Management Console of the target account.

To share a portfolio

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. On the Portfolios page, select the portfolio that you want to share, and choose Share Portfolio.

3. In the Enter AWS account ID window, type the account ID of the AWS account that you are sharing with. Then, choose Share. If sharing succeeds, a message on the Portfolios page confirms that the portfolio is linked with the target account. It also provides a URL that the recipient administrator must use to import the portfolio.

4. Send the URL to the AWS Service Catalog administrator of the target account. The URL opens the Import Portfolio page with the ARN of the shared portfolio automatically provided.

Importing a Portfolio

If an AWS Service Catalog administrator for another AWS account shares a portfolio with you, import that portfolio into your account so that you can distribute its products to your end users.

To import the portfolio, you must get a URL for importing the portfolio from the administrator.

Open the URL, and on the Import Portfolio page, choose Import. The Portfolios page displays, and the portfolio is shown in the Imported Portfolios table.

Using AWS CloudFormation StackSets

Note

This feature is currently in beta mode. AutoTags are not currently supported with AWS CloudFormation StackSets.

You can use AWS CloudFormation StackSets to launch AWS Service Catalog products across multiple regions and accounts. You can specify the order in which products deploy sequentially within regions. Across accounts, products are deployed in parallel. When launching, users can specify failure tolerance and the maximum number of accounts in which to deploy in parallel. For more information, see Working with AWS CloudFormation StackSets.

Stack sets vs. stack instances

A stack lets you create stacks in AWS accounts across regions by using a single AWS CloudFormation template.

[image: image165.png]

53

AWS Service Catalog Administrator Guide

Stack set constraints

[image: image166.png]

A stack instance refers to a stack in a target account within a region and is associated with only one stack set.

For more information, see StackSets Concepts.

Stack set constraints

In AWS Service Catalog, you can use stack set constraints to configure product deployment options.

For more information, see the section called “Stack Set Constraints” (p. 34).

[image: image167.png]

54

AWS Service Catalog Administrator Guide

Managing All Provisioned Products as Administrator

[image: image168.png]

Managing Provisioned Products

AWS Service Catalog provides an interface for managing provisioned products. You can view, update, and terminate all provisioned products for your catalog based on access level. Refer to the following sections for example procedures.

Contents

· Managing All Provisioned Products as Administrator (p. 55)
· Tutorial: Identifying User Resource Allocation (p. 55)
Managing All Provisioned Products as Administrator

To manage all provisioned products for the account, you will need AWSServiceCatalogAdminFullAccess or equivalent access to the provisioned product write operations. For more information, see Authentication and Access Control for AWS Service Catalog (p. 18).

To view and manage all provisioned products

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

If you are already logged in to the AWS Service Catalog console, choose Service Catalog, End user.

2. If necessary, scroll down to the Provisioned products section.

3. In the Provisioned products section, choose the View: list and select the level of access you wish to

see: User, Role, or Account. This displays all the provisioned products in the catalog.

4. Choose a provisioned product to view, update, or terminate. For more information about the information provided in this view, see Viewing Provisioned Product Information.

Tutorial: Identifying User Resource Allocation

You can identify the user who provisioned a product and resources associated with the product using the AWS Service Catalog console. This tutorial helps translate this example to your own specific provisioned products.

To manage all provisioned products for the account, you need AWSServiceCatalogAdminFullAccess or equivalent access to the provisioned product write operations. For more information, see Authentication and Access Control for AWS Service Catalog (p. 18).

To identify the user who provisioned a product and the associated resources

1. Navigate to the provisioned products console in AWS Service Catalog console.

[image: image169.png]

55

AWS Service Catalog Administrator Guide

Tutorial: Identifying User Resource Allocation

[image: image170.png]ANS v Se

ices v

@ Service Catalog v Dashboard > Provisioned prod

Dashboard Terminate provisioned product
Products By name
| Provisioned products list | o —

Adi

Portfolios list

Products

2. In the Provisioned products pane, for View:, choose Account.

[image: image171.jpg]Provisioned products

Update provisioned product Terminate provisioned product

View: User~ By name

t name Created time

3. Identify the provisioned product to investigate, and select the provisioned product.

[image: image172.png]

56

AWS Service Catalog Administrator Guide

Tutorial: Identifying User Resource Allocation

[image: image173.png]

[image: image174.jpg]Provisioned products

date provisioned product Terminate provisioned product

View: Adminv By pame
Provisioned product name Created time Status
Esfasdfa Jul 19th 2016 10:12:33 UTC-.. Available
testSCproduct Aug 17th 2016 12:20:58 UTC Available

4. Expand the Events section and note the Provisioned product ID and CloudformationStackARN values.

5. Use the provisioned product ID to identify the CloudTrail record that corresponds to this launch and identify the requesting user (typically, this is entered as an email address during federation). In this example, it is "steve".

[image: image175.png]

{

"eventVersion":"1.03","userIdentity":

{

"type":"AssumedRole",

"principalId":"[id]:steve",

"arn":"arn:aws:sts::[account number]:assumed-role/SC-usertest/steve",

"accountId":[account number],

"accessKeyId":[access key],

"sessionContext":

{

"attributes":

{

"mfaAuthenticated":[boolean],

"creationDate":[timestamp]

},

"sessionIssuer":

{

"type":"Role",

"principalId":"AROAJEXAMPLELH3QXY",

"arn":"arn:aws:iam::[account number]:role/[name]",

"accountId":[account number],

"userName":[username]

}

}

},

"eventTime":"2016-08-17T19:20:58Z","eventSource":"servicecatalog.amazonaws.com",

"eventName":"ProvisionProduct",

"awsRegion":"us-west-2",

"sourceIPAddress":[ip address],

"userAgent":"Coral/Netty",

"requestParameters":

{

"provisioningArtifactId":[id],

"productId":[id],

"provisioningParameters":[Shows all the parameters that the end user entered],

"provisionToken":[token],

"pathId":[id],

"provisionedProductName":[name],

"tags":[],

"notificationArns":[]

},

"responseElements":

[image: image176.png]

57

AWS Service Catalog Administrator Guide

Tutorial: Identifying User Resource Allocation

[image: image177.png]

{

[image: image178.png]

"recordDetail":

{

"provisioningArtifactId":[id],

"status":"IN_PROGRESS",

"recordId":[id],

"createdTime":"Aug 17, 2016 7:20:58 PM",

"recordTags":[],

"recordType":"PROVISION_PRODUCT",

"provisionedProductType":"CFN_STACK",

"pathId":[id],

"productId":[id],

"provisionedProductName":"testSCproduct",

"recordErrors":[],

"provisionedProductId":[id]

}

},

"requestID":[id],

"eventID":[id],

"eventType":"AwsApiCall",

"recipientAccountId":[account number]

}

6. Use the CloudformationStackARN value to identify AWS CloudFormation events to find information about resources created. You can also use the AWS CloudFormation API to obtain this information. For more information, see AWS CloudFormation API Reference.

[image: image179.jpg]Stk name: SC.GB4597B53172:1004ca28151Ca415TC0205I0HOB20044TE 19TbIBE26601639630230108
STCKID: a3 coudtormation us-vest2 B0450TBS3172 SacK/SC S0450TB53172. 1004002815 16a514157C00530434050200447510TIBS256016330a02329 103K 2660-64311166-3250. 503683201200
Status: | CREATE COMPLETE

status reason:
Deseription:
+
» Outputs
~ Resources.
Logieatio Prysicaiio Tpe st 5
Ecanstance. [ERTT—— WS EC2 instance CREATE_COMPLETE
SCOAS0TB172.1004c 2615 TCaBI T57C0R0SI04340SE2IDANTSAOTRIBS 25
I, 1632030223310 instanceSecurtyGroup-18SOMGISHKIZ ArEonone SR
~ Events.
160817 sts. pe Logical o stas reason
b 122212UTCO700 CREATE COMPLETE AN CovdFomaton: Siack]
51CaBU1570a953043405029
"
aaoa
» 122210UTCAT00 CREATE_COMPLETE A5 EC2 mstance. Ecanstnce
b 122120UTCON00 CREATE N PROGRESS S EC2 nstance ECanstance. Resource creaton infiated
122123UTCOT00 CREATE #_PROGAESS NS EC2 instarce. EC2nstance.
» 122120UTCO700 CREATE_COWPLETE AWS EC2 SecurtyGroup nstancesecurtyGroup
b 12220UTCAI0 CREATE W PROGRESS AWS EC2 SecurtyGroup InstanceSecurtyGroup Resource creaton nfiated
122104UTCOT0 CHEATE Wi FROGRESS. AS EC2 SecutyGrowp InstancesecutyGrow.
b 122SUTCOT0 CREATE W PROGRESS ANS. loudFomaton: Stack SCEBBITEEINT2-1004ka2e 1 User nkialed

51CaB157CONB0AU0029
[——
anion

Note that you can perform steps 1 through 4 using the AWS Service Catalog API or the AWS CLI. For more information, see AWS Service Catalog Developer Guide and AWS Service Catalog Command Line Reference.

[image: image180.png]

58

AWS Service Catalog Administrator Guide

[image: image181.png]

AWS Service Catalog TagOption Library

To allow administrators to easily manage tags on provisioned products, AWS Service Catalog provides a TagOption library. A TagOption is a key-value pair managed in AWS Service Catalog. It is not an AWS tag, but serves as a template for creating an AWS tag based on the TagOption.

The TagOption library makes it easier to enforce the following:

· A consistent taxonomy

· Proper tagging of AWS Service Catalog resources

· Defined, user-selectable options for allowed tags

Administrators can associate TagOptions with portfolios and products. During a product launch (provisioning), AWS Service Catalog aggregates the associated portfolio and product TagOptions, and applies them to the provisioned product, as shown in the following diagram.

[image: image182.jpg]‘Tagoptions
| forporfolio

—

Tagoption library

Product 1
‘Tagoptions Product 2
for products

A Products
Portolic

Provisioned product 3
sunch—p! (with tags from the
portfolio and product 3)

Service Catalog administrator

Service Catalog user

With the TagOption library, you can deactivate TagOptions and retain their associations to portfolios or products, and reactivate them when you need them. This approach not only helps maintain library integrity, it also allows you to manage TagOptions that might be used intermittently, or only under special circumstances.

You manage TagOptions with the AWS Service Catalog console or the TagOption library API. For more information, see AWS Service Catalog API Reference.

Contents

[image: image183.png]

59

AWS Service Catalog Administrator Guide

Launching a Product with TagOptions

[image: image184.png]

· Launching a Product with TagOptions (p. 60)
· Managing TagOptions (p. 62)
Launching a Product with TagOptions

When a user launches a product that has TagOptions, AWS Service Catalog performs the following actions on your behalf:

· Collects all TagOptions for the product and the launching portfolio.

· Ensures that only TagOptions with unique keys are used in a tag on the provisioned product. Users get a multiple-choice value lists for a key. After the user chooses a value, it becomes a tag on the provisioned product.

· Allows users to add non-conflicting tags to the product during provisioning.

The following use cases demonstrate how TagOptions work during launch.

Example 1: A Unique TagOption Key

An administrator creates TagOption[Group=Finance] and associates it with Portfolio1, which has Product1 with no TagOptions. When a user launches the provisioned product, the single TagOption becomes Tag[Group=Finance], as follows:

[image: image185.jpg]Product 1 Product 1
‘ Group, Finance

Portfolio 1

TERMINATE!

The tagbecomes part of the
provisioned product at launch

The user may see the tag setat
Product 1 launch, but is not required to
perform any action

Example 2: A Set of TagOptions with the Same Key on a Portfolio

An administrator has placed two TagOptions with the same key on a portfolio, and there are no TagOptions with the same key on any products within that portfolio. During launch, the user must select one of the two values associated with the key. The provisioned product is then tagged with the key and the user-selected value.

[image: image186.png]

60

AWS Service Catalog Administrator Guide

Example 3: A Set of TagOptions with the Same Key

on Both the Portfolio and a Product in that Portfolio

[image: image187.png]Product 1 Product 1

CostCenter, 70
CostCenter, 72

Portfolio 2 70 %

The user picked 70 for the cost
LAUNCI center. This tag s part of the

running instance.
Product 1
The user is given a choice of two

cost centers and can pick one

Example 3: A Set of TagOptions with the Same Key on Both the Portfolio and a Product in that Portfolio

An administrator has placed several TagOptions with the same key on a portfolio, and there are also several TagOptions with the same key on the product within that portfolio. AWS Service Catalog creates a set of values from the aggregation (logical AND operation) of the TagOptions. When the user launches the product, he or she sees and selects from this set of values. The provisioned product is tagged with the key and the user-selected value.

[image: image188.png]CostCenter, 65
CostCenter, 70 Product 1
CostCenter, 72

(CostCenter, 73

Portfolio 2 AND 70

CostCenter, 70

CostCenter, 72 LAUNCH!
Product 1 ic i
AND logic is used to ‘The user is given a choice of two
combine the values with the o Canters and can pick one
same key from Portfolio

and Product tag sets.

61

AWS Service Catalog Administrator Guide

Example 4: Multiple TagOptions with

the Same Key and Conflicting Values

[image: image189.png]

Example 4: Multiple TagOptions with the Same Key and Conflicting Values

An administrator has placed several TagOptions with the same key on a portfolio, and there are also several TagOptions with the same key on the product in that portfolio. AWS Service Catalog creates a set of values from the aggregation (logical AND operation) of the TagOptions. If the aggregation doesn't find values for the key, AWS Service Catalog creates a tag with the same key and a value of sc-tagconflict-portfolioid-productid, where portfolioid and productid are the ARNs of the portfolio and product. This ensures that the provisioned product is tagged with the correct key and with a value that the administrator can find and correct.

[image: image190.jpg]CostCenter, 65
A CostCenter, 70

¥ costcenter, 72 Product 1

(CostCenter, 73

Portfolio 2 AND
A > CostCenter, 327
v

CostCenter, 115

CostCenter s not set on the
Product 1 instance, but the conlict is flagged

in several locations. User il can
{aunch the product. Tag confiict
should not prevent products from
being launched

Managing TagOptions

As an administrator, you can create, remove, and edit TagOptions, and associate and disassociate TagOptions with a portfolio or product.

To create a TagOption (console)

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose TagOption library.

3. Either type a new value for one of the key groupings or choose Create new TagOption and type a new key and value.

After the new TagOption has been created, it's grouped by key-value pair and sorted alphabetically. You can delete a newly created TagOption by choosing Delete from library. This deletion feature is available only for newly created TagOptions. It's designed for quick management of mistyped TagOptions.

To create a TagOption using the AWS Service Catalog API, see CreateTagOption.

To associate a TagOption with a portfolio or product (console)

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose TagOption, select a TagOption, and select the portfolio or product to associate the TagOption with.

Alternatively, from a portfolio or product detail page, choose Add TagOption and select the TagOption to associate the TagOption with.

3. Choose Save.

[image: image191.png]

62

AWS Service Catalog Administrator Guide

Managing TagOptions

[image: image192.png]

To associate a TagOption with a portfolio or product using the AWS Service Catalog API, see AssociateTagOptionWithResource.

To remove (disassociate) a TagOption from a portfolio or product (console)

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose TagOption, select a TagOption, and open the Detail page.

3. Select the small x to the right of the portfolio or product from which you want to remove the association.

Alternatively, from a portfolio or product Detail page, choose the small x to the right of the TagOption that you want to remove.

To remove a TagOption using the AWS Service Catalog API, see DisassociateTagOptionFromResource.

To edit a TagOption

1. Open the AWS Service Catalog console at https://console.aws.amazon.com/servicecatalog/.

2. Choose TagOption library, select a TagOption, and edit the key or value.

3. Choose Save.

[image: image193.png]

63

AWS Service Catalog Administrator Guide

Monitoring Tools

[image: image194.png]

Monitoring AWS Service Catalog

You can monitor your AWS Service Catalog resources using Amazon CloudWatch, which collects and processes raw data from AWS Service Catalog into readable metrics. These statistics are recorded for a period of two weeks, so that you can access historical information and gain a better perspective on how your service is performing. AWS Service Catalog metric data is automatically sent to CloudWatch in 1-minute periods. For more information about CloudWatch, see the Amazon CloudWatch User Guide.

For a list of available metrics and dimensions, see AWS Service Catalog CloudWatch Metrics (p. 64).

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS Service Catalog and your AWS solutions. You should collect monitoring data from all of the parts of your AWS solution so that you can more easily debug a multi-point failure if one occurs. Before you start monitoring AWS Service Catalog, you should create a monitoring plan that includes answers to the following questions:

· What are your monitoring goals?

· What resources will you monitor?

· How often will you monitor these resources?

· What monitoring tools will you use?

· Who will perform the monitoring tasks?

· Who should be notified when something goes wrong?

Monitoring Tools

AWS provides various tools that you can use to monitor AWS Service Catalog. You can configure some of these tools to do the monitoring for you, while some of the tools require manual intervention. We recommend that you automate monitoring tasks as much as possible.

Automated Monitoring Tools

You can use the following automated monitoring tools to watch AWS Service Catalog and report when something is wrong:

· Amazon CloudWatch alarms – Watch a single metric over a time period that you specify, and perform one or more actions based on the value of the metric relative to a given threshold over a number of time periods. The action is a notification sent to an Amazon Simple Notification Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not invoke actions simply because they are in a particular state; the state must have changed and been maintained for a specified number of periods. To learn how to create an alarm, see Creating Amazon CloudWatch Alarms. For more information on using Amazon CloudWatch metrics with AWS Service Catalog, see AWS Service Catalog CloudWatch Metrics (p. 64).
AWS Service Catalog CloudWatch Metrics

You can monitor your AWS Service Catalog resources using Amazon CloudWatch, which collects and processes raw data from AWS Service Catalog into readable metrics. These statistics are recorded for a

[image: image195.png]

64

AWS Service Catalog Administrator Guide

Enabling CloudWatch Metrics

[image: image196.png]

period of two weeks, so that you can access historical information and gain a better perspective on how your service is performing. AWS Service Catalog metric data is automatically sent to CloudWatch in 1-minute periods. For more information about CloudWatch, see the Amazon CloudWatch User Guide.

Topics

· Enabling CloudWatch Metrics (p. 65)
· Available Metrics and Dimensions (p. 65)
· Viewing AWS Service Catalog Metrics (p. 66)
Enabling CloudWatch Metrics

Amazon CloudWatch metrics are enabled by default.

Available Metrics and Dimensions

The metrics and dimensions that AWS Service Catalog sends to Amazon CloudWatch are listed below.

AWS Service Catalog Metrics

The AWS/ServiceCatalog namespace includes the following metrics.

	Metric
	Description

	
	
	

	ProvisionedProductLaunch
	T
	umber of provisioned products launched for a given product and

	
	provisioning artifact in a specified time period.

	
	Units: Count

	
	Valid statistics: Minimum, Maximum, Sum, Average

	
	
	

Dimensions for AWS Service Catalog Metrics

AWS Service Catalog sends the following dimensions to CloudWatch.

	Dimension
	Description

	
	

	State
	This dimension filters the data you request for all

	
	provisioned products launched with this specified state.

	
	This helps you categorize your data by the state of

	
	launch.

	
	Valid State: SUCCEEDED, FAILED

	
	

	ProductId
	This dimension filters the data you request for the

	
	identified product id only. This helps you to pinpoint an

	
	exact product from which to be launched.

	
	

	ProvisioningArtifactId
	This dimension filters the data you request for the

	
	identified provisioning artifact id only. This helps you to

	
	pinpoint an exact version of products from which to be

	
	launched.

	
	

[image: image197.png]

65

AWS Service Catalog Administrator Guide

Viewing AWS Service Catalog Metrics

[image: image198.png]

Viewing AWS Service Catalog Metrics

After you have enabled CloudWatch metrics for AWS Service Catalog, you can view those metrics in the CloudWatch console, which provides a fine-grained and customizable display of your resources, as well as the number of running tasks in a service.

Topics

· Viewing AWS Service Catalog Metrics in the CloudWatch Console (p. 66)
Viewing AWS Service Catalog Metrics in the CloudWatch Console

AWS Service Catalog metrics can be viewed in the CloudWatch console. The CloudWatch console provides a detailed view of AWS Service Catalog metrics, and you can tailor the views to suit your needs. For more information about CloudWatch, see the Amazon CloudWatch User Guide.

To view metrics in the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the Metrics section in the left navigation, choose Service Catalog.

3. Choose the metrics to view.

[image: image199.png]

66

AWS Service Catalog Administrator Guide

Connector for ServiceNow

[image: image200.png]

Product and Service Integrations with AWS Service Catalog

AWS Service Catalog is integrated with a number of AWS services and partner products and services. Use the information in the following sections to help you configure AWS Service Catalog to integrate with the products and services you use.

Topics

· Connector for ServiceNow (p. 67)
Connector for ServiceNow

To help customers integrate provisioning secure, compliant, and pre-approved AWS products into their ServiceNow portal, AWS created the AWS Service Catalog Connector for ServiceNow.

AWS Service Catalog Connector for ServiceNow synchronizes AWS Service Catalog portfolios and products with the ServiceNow Service Catalog to enable ServiceNow users to request approved AWS products via ServiceNow.

Topics

· Background (p. 67)
· Getting Started (p. 68)
· Release Notes (p. 68)
· Baseline Permissions (p. 69)
· Configure AWS Service Catalog (p. 73)
· Creating StackSet Constraints (p. 54)
· Configure ServiceNow (p. 74)
· Validate Configurations (p. 79)
· ServiceNow Additional Administrator Features (p. 80)
· Upgrade Instructions (p. 81)
Background

AWS Service Catalog allows you to centrally manage commonly deployed AWS services and provisioned software products. It helps your organization achieve consistent governance and compliance requirements, while enabling users to quickly deploy only the approved AWS services they need.

ServiceNow is an enterprise service management platform that places a service‑oriented lens on the activities, tasks, and processes that make up day‑to‑day work life to enable a modern work environment. ServiceNow Service Catalog is a self-service application that end users can use to order IT services based on request fulfillment approvals and workflows.

[image: image201.png]

67

AWS Service Catalog Administrator Guide

Getting Started

[image: image202.png]

Getting Started

Before installing the AWS Service Catalog Connector for ServiceNow, verify that you have the necessary permissions in your AWS account and ServiceNow instance.

AWS prerequisites

To get started you need an AWS account to configure your AWS portfolios and products. For details, see Setting Up for AWS Service Catalog (p. 6).

For each AWS account, the Connector for ServiceNow also requires two AWS Identity and Access Management (IAM) users and two IAM roles:

· An IAM user to sync AWS Service Catalog portfolios and products to ServiceNow Service Catalog items.

· An IAM role configured as an AWS Service Catalog end user and assigned to each portfolio.

· An IAM end user to assume the previous end user role. This end user has a baseline of permissions to provision AWS services in the ServiceNow Service Catalog. This ServiceNow end user is linked to the end user role in IAM.

· An IAM launch role used to place baseline AWS service permissions into the AWS Service Catalog launch constraints. Configuring this role enables segregation of duty by provisioning product resources on behalf of the ServiceNow end user.

Baseline permissions enable an end user to provision the following AWS services: Amazon Simple Storage Service and Amazon Elastic Compute Cloud. To allow end users to provision AWS services beyond the baseline permissions, you must include the additional AWS service permissions to the launch role. For information about initial permissions setup actions, see the section called “Baseline Permissions” (p. 69).

Note

To use an AWS CloudFormation template to set up the AWS configurations of the Connector for ServiceNow, see Connector for ServiceNow-AWS Configuration.

ServiceNow Prerequisites

In addition to the AWS account, you need a ServiceNow instance to install the ServiceNow Connector scoped application. The initial installation should occur in either an enterprise sandbox or a ServiceNow Personal Developer Instance (PDI), depending on your organization’s technology governance requirements. The ServiceNow administrator needs the admin role to install the Connector for ServiceNow scoped application.

Release Notes

Version 2.0.2 of the AWS Service Catalog Connector for ServiceNow includes:

· Support for AWS CloudFormation StackSets, enabling launch of AWS Service Catalog products across multiple regions and accounts.

· Support for AWS CloudFormation Change Sets, enabling a preview of resource changes from a launch or update.

· Display of AWS Service Catalog portfolios (including correlated products) as sub-categories in the ServiceNow Service Catalog.

This version also includes prior AWS Service Catalog Connector for ServiceNow features such as:

[image: image203.png]

68

AWS Service Catalog Administrator Guide

Baseline Permissions

[image: image204.png]

· Support AWS Service Catalog self-service actions.

· Enable ServiceNow administrators to delete AWS Service Catalog products in ServiceNow that do not have self-service actions associated.

· Render AWS Service Catalog products in the ServiceNow Portal page.

· Enable multi-account support.

· Request update against an existing AWS Service Catalog product provisioned in ServiceNow.

· Validate AWS Regions and identities associated with syncing AWS and ServiceNow.

· Sync product details in the My Asset/CMDB view.

Baseline Permissions

This section provides instructions on how to set up the baseline AWS users and permissions needed for the AWS Service Catalog Connector for ServiceNow. For each AWS account, the Connector for ServiceNow requires two IAM users and roles:

· AWS Service Catalog Sync User: IAM user to sync AWS portfolios and products to ServiceNow catalog items (ServiceCatalogAdminReadOnly managed policy).

· AWS Service Catalog End User role: IAM role configured as an AWS Service Catalog end user and assigned to each AWS Service Catalog portfolio.

· AWS Service Catalog End User: Enables Connector for ServiceNow to provision AWS products by assuming a role that contains the trust relationship with the account and policies needed for the end user privileges in AWS Service Catalog.

· SCConnect Launch role: IAM role used to place baseline AWS service permissions into the AWS Service Catalog launch constraints. Configuring this role enables segregation of duty through provisioning product resources on behalf of the ServiceNow end user. The SCConnectLaunch role baseline contains permissions to Amazon EC2 and Amazon S3 services. If your products contain more AWS services, you must either include those services in the SCConnectLaunch role or create new launch roles.

Creating AWS Service Catalog Sync User

The following section describes how to create the AWS Service Catalog Sync user and associate the appropriate IAM permission. To perform this task, you need IAM permissions to create new users.

To create AWS Service Catalog sync user

1. Go to Creating IAM Policies. Following the instructions there, create a policy called SCConnectorAdmin for ServiceNow administrators to delete AWS Service Catalog products in ServiceNow that do not have self-service actions associated. Copy the following policy and paste it into Policy Document:

[image: image205.png]

{

"Version": "2012-10-17",

"Statement": [{

"Sid": "VisualEditor0",

"Effect": "Allow",

"Action": [

"servicecatalog:DisassociateProductFromPortfolio",

"servicecatalog:DeleteProduct",

"servicecatalog:DeleteConstraint",

"servicecatalog:DeleteProvisionedProductPlan",

"servicecatalog:DeleteProvisioningArtifact"

],

"Resource": "*"

[image: image206.png]

69

AWS Service Catalog Administrator Guide

Baseline Permissions

[image: image207.png]

}]

[image: image208.png]

}

2. Go to Creating an IAM User in Your AWS Account. Following the instructions there, create a sync user (that is, SCSyncUser). The user needs programmatic and AWS Management Console access to follow the Connector for ServiceNow installation instructions.

3. Set permissions for your sync user (SCSyncUser). Choose Attach existing policies directly and select the ServiceCatalogAdminReadOnlyAccess and SCConnectorAdmin policies.

4. Review and choose Create User.

5. Note the Access and Secret Access information. Download the .csv file that contains the user credential information.

Creating AWS Service Catalog End User

The following section describes how to create the AWS Service Catalog end user and associate the appropriate IAM permission. To perform this task, you need IAM permissions to create new users.

If you are upgrading from an earlier version of the Connector, note that the ServiceCatalogServiceNowAdditionalPermissions AWS policy is no longer needed for the Connector for ServiceNow. Proceed to the Create a SnowEndUser role step.

To create AWS Service Catalog end user

1. Go to Create a role. Following the instructions there, create a role for the ServiceNow end user to assume (such as SnowEndUser).

For products using AWS CloudFormation StackSets, you need to create a StackSet inline policy. With AWS CloudFormation StackSets, you are able to create products that are deployed across multiple accounts and regions. Using an administrator account, you define and manage an AWS Service Catalog product, and use it as the basis for provisioning stacks into selected target accounts across specified regions. You need to have the necessary permissions defined in your AWS accounts.

To set up the necessary permissions, go to Granting Permissions for Stack Set Operations. Following the instructions there, create an AWSCloudFormationStackSetAdministrationRole and an AWSCloudFormationStackSetExecutionRole.

Create the StackSet inline policy to enable provisioning a product across multiple regions within one account.

[image: image209.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Action": [

"sts:AssumeRole"

],

"Resource": [

"arn:aws:iam::123456789123:role/AWSCloudFormationStackSetExecutionRole"

],

"Effect": "Allow"

},

{

"Effect": "Allow",

"Action": [

"iam:GetRole",

"iam:PassRole"

],

[image: image210.png]

70

AWS Service Catalog Administrator Guide

Baseline Permissions

[image: image211.png]

"Resource": "arn:aws:iam::123456789123:role/ AWSCloudFormationStackSetAdministrationRole"

[image: image212.png]

}

]

}

Note

Replace 123456789123 with your account information. The Connector for ServiceNow-

 HYPERLINK "https://s3.amazonaws.com/servicecatalogconnector/SC_ConnectorForServiceNowv2.0.2-AWS_Configurations.yml" AWS Configuration file includes the StackSet permissions.

2. Add the following permissions (policies) to the role:

· AWSServiceCatalogEndUserFullAccess
· StackSet (inline policy)
· AmazonEC2ReadOnlyAccess
· AmazonS3ReadOnlyAccess - Note: For AWS Service Catalog products using AWS CloudFormation StackSets, you need to modify the SnowEndUser role to include the ReadOnly permissions for the service(s) you want to provision. For example, to provision an Amazon S3 bucket, include the AmazonS3ReadOnlyAccess policy to the SnowEndUser role.

· Create a trust relationship on the SnowEndUser role to the account. Copy and paste the following text into the Trust Relationship (replacing the number string for ARN with your account information):

[image: image213.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"AWS": "arn:aws:iam::123456789123:root"

},

"Action": "sts:AssumeRole",

"Condition": {}

}

]

}

3. Go to Create a policy. Following the instructions there, create a policy called StsAssume-SC. Copy and paste the following text into the JSON editor (replacing the number string for ARN with your account information):

[image: image214.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "VisualEditor0",

"Effect": "Allow",

"Action": "sts:AssumeRole",

"Resource": "arn:aws:iam:: 123456789123:role/SnowEndUser"

}

]

}

4. Go to Creating an IAM User in Your AWS Account. Following the instructions there, create a user (such as SCEndUser). The user needs programmatic and AWS Management Console access to follow the ServiceNow Connector installation instructions.

[image: image215.png]

71

AWS Service Catalog Administrator Guide

Baseline Permissions

[image: image216.png]

5. Attach the assume policy (StsAssume-SC) to your end user (SCEndUser). Choose Attach existing policies directly and select StsAssume-SC.

6. Review and choose Create User.

7. Note the Access and Secret Access information. Download the .csv file that contains the user credential information.

Creating SCConnectLaunch Role

The following section describes how to create the SCConnectLaunch role. This role is used to place baseline AWS service permissions into the AWS Service Catalog launch constraints. For more information, see AWS Service Catalog Launch Constraints.

To create SCConnectLaunch role

1. Create the AWSCloudFormationFullAccess policy. Choose create policy and then paste the following in the JSON editor:

[image: image217.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"cloudformation:DescribeStackResource",

"cloudformation:DescribeStackResources",

"cloudformation:GetTemplate",

"cloudformation:List*",

"cloudformation:DescribeStackEvents",

"cloudformation:DescribeStacks",

"cloudformation:CreateStack",

"cloudformation:DeleteStack",

"cloudformation:DescribeStackEvents",

"cloudformation:DescribeStacks",

"cloudformation:GetTemplateSummary",

"cloudformation:SetStackPolicy",

"cloudformation:ValidateTemplate",

"cloudformation:UpdateStack",

"cloudformation:CreateChangeSet",

"cloudformation:DescribeChangeSet",

"cloudformation:ExecuteChangeSet",

"cloudformation:DeleteChangeSet",

"s3:GetObject"

],

"Resource": "*"

}

]

}

Note

AWSCloudFormationFullAccess now includes additional permissions for ChangeSets.

2. Create a policy called ServiceCatalogSSMActionsBaseline. Follow the instructions on Creating IAM Policies, and paste the following into the JSON editor:
[image: image218.png]

{

"Version": "2012-10-17",

"Statement": [

[image: image219.png]

72

AWS Service Catalog Administrator Guide

Configure AWS Service Catalog

[image: image220.png]

{

[image: image221.png]

"Sid": "Stmt1536341175150",

"Action": [

"servicecatalog:ListServiceActionsForProvisioningArtifact",

"servicecatalog:ExecuteprovisionedProductServiceAction",

"ssm:DescribeDocument",

"ssm:GetAutomationExecution",

"ssm:StartAutomationExecution",

"ssm:StopAutomationExecution",

"cloudformation:ListStackResources",

"ec2:DescribeInstanceStatus",

"ec2:StartInstances",

"ec2:StopInstances"

],

"Effect": "Allow",

"Resource": "*"

}

]

}

3. Create the SCConnectLaunch role. Assign the trust relationship to AWS Service Catalog.

[image: image222.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "",

"Effect": "Allow",

"Principal": {

"Service": "servicecatalog.amazonaws.com"

},

"Action": "sts:AssumeRole"

}

]

}

4. Attach the relevant policies to the SCConnectLaunch role. Attach the following baseline IAM policies:

· AmazonEC2FullAccess (AWS managed policy)

· AmazonS3FullAccess (AWS managed policy)

· AWSCloudFormationFullAccess (custom managed policy)

· ServiceCatalogSSMActionsBaseline
Configure AWS Service Catalog

Now that you have created two IAM users with baseline permissions in each account, the next step is to configure AWS Service Catalog. This section describes how to configure AWS Service Catalog to have a portfolio that includes an Amazon S3 bucket product. Use the Amazon S3 template located at Creating an Amazon S3 Bucket for Website Hosting for your preliminary product. Copy and save the Amazon S3 template to your device.

To configure AWS Service Catalog

1. Create a portfolio by following the steps at Create an AWS Service Catalog Portfolio (p. 13).

2. To add the Amazon S3 bucket product to the portfolio you just created, in the AWS Service Catalog console, on the Upload new product page, enter product details.

[image: image223.png]

73

AWS Service Catalog Administrator Guide

Creating StackSet Constraints

[image: image224.png]

3. For Select template, choose the Amazon S3 bucket AWS CloudFormation template you saved to your device.

4. Set Constraint type to Launch for the product that you just created with the SCConnectLaunch role in the baseline permissions. For additional launch constraint instructions, see AWS Service Catalog Launch Constraints (p. 31).
Note

The AWS configuration design requires each AWS Service Catalog product to have a launch constraint. Failure to follow this step may result in an “Unable to Retrieve Parameter” message within ServiceNow Service Catalog.

5. Add the SnowEndUser IAM role to the AWS Service Catalog portfolio. For additional user access instructions, see Granting Access to Users (p. 27).

Creating StackSet Constraints

To apply a stack set constraint to an AWS Service Catalog product

1. Go to AWS Service Catalog as a catalog admin

2. Choose the portfolio that contains the product.

3. Expand Constraints and choose Add constraints.

4. Choose the product from Product and set Constraint type to Stack Set. Choose Continue.

5. On the Stack Set constraint page, enter a description.

6. Choose the account(s) in which you want to create products.

7. Choose the region(s) in which you want to deploy products. Products are deployed in these regions in the order that you specify.

8. Choose the AWSCloudFormationStackSetAdministrationRole role that will be used to manage your target accounts.

9. Choose the AWSCloudFormationStackSetExecutionRole role that the Administrator Role will assume.

10. Choose Submit.

Note that the Connector for ServiceNow-AWS Configuration template creates the permissions as well as outputs needed for StackSet constraints. Example StackSet outputs:

[image: image225.png]

SCStackSetAdministratorRoleARN

arn:aws:iam::123456789123:role/AWSCloudFormationStackSetAdministrationRole

SCIAMStackSetExecutionRoleName

AWSCloudFormationStackSetExecutionRole

SCIAMAdminRoleARN

arn:aws:iam::123456789123:role/AWSCloudFormationStackSetAdministrationRole

Note

Replace the 123456789123 with your account information.

Configure ServiceNow

After completing the IAM and AWS Service Catalog configurations, the next configuration area to set up is ServiceNow. Installation tasks within ServiceNow include:

• Clear the ServiceNow platform cache.

[image: image226.png]

74

AWS Service Catalog Administrator Guide

Configure ServiceNow

[image: image227.png]

· Clear the web browser cache.

· Install the ServiceNow Connector scoped application, and upload and commit the ServiceNow Connector Update Set.

· Configure ServiceNow platform system admin components.

· Configure AWS Service Catalog Connector scoped application, including accounts, scheduled jobs sync, and permissions.

Clear the ServiceNow Platform Cache

Before installing the AWS Service Catalog scoped app, we recommend that you clear the ServiceNow platform cache by typing in the following URL: https://[InsertServiceNowInstanceNameHere]/

cache.do

Note

Ensure that you install the update set in a non-production/sandbox environment. Consult a ServiceNow system administrator if you need approval to clear the ServiceNow platform cache.

Clear the Web Browser Cache

Clear the web browser cache to clear previous rendered product forms.

Installing ServiceNow Connector Scoped Application

The AWS Service Catalog Connector for ServiceNow is released as a conventional ServiceNow scoped application via a ServiceNow Update Set. ServiceNow update sets are code changes to the out-of-the-box platform and enable developers to move code across ServiceNow instance environments. The Connector for ServiceNow update set is available to download in the ServiceNow store. For users installing the update set on a ServiceNow Personal Developer Instance (PDI), download the code from Connector for ServiceNow version 2.0.2 update set.
The Connector for ServiceNow version 2.0.2 update set may be applied to a “Kingston,” “London,” or "Madrid" platform release of ServiceNow.

If you do not already have a ServiceNow instance, begin with the first step below. If you already have a ServiceNow instance, proceed to To download AWS Service Catalog Connector for ServiceNow.

To obtain a ServiceNow instance

1. Go to Obtaining a Personal Developer Instance.

2. Create ServiceNow developer program credentials.

3. Follow the instructions for requesting a ServiceNow instance.

4. Capture your instance details, including URL, administrative ID, and temporary password credentials.

To download AWS Service Catalog Connector for ServiceNow

1. From your ServiceNow dashboard, type plugins into the navigation panel in the upper left.

2. When the System Plugins page populates, next to the dropdown that says Name, search for user criteria.

3. Choose User Criteria Scoped API and then choose Activate.

4. From the ServiceNow Store, download the AWS Service Catalog Connector. When prompted, log in with your administrator credentials.

[image: image228.png]

75

AWS Service Catalog Administrator Guide

Configure ServiceNow

[image: image229.png]

To install the update set

1. From your ServiceNow dashboard, type update sets into the navigation panel in the upper left.

2. Choose Retrieved Update Sets from the results.

3. Select Import Update Set from XML and upload the release XML file.

4. Select the AWS Service Catalog Connector for ServiceNow update set.

5. Choose Preview Update Set, which makes ServiceNow validate the connector update set.

6. Choose Update.

7. Choose Commit Update Set to apply the update set and create the application. This procedure should complete 100%.

Configuring ServiceNow Platform System Admin Components

To enable the AWS Service Catalog Connector for ServiceNow scoped application named AWS Service Catalog, the system admin must configure specific platform tables, forms, and views.

Note

If you are upgrading from an earlier version, the Enable permissions on ServiceNow Platform tables (User Criteria and Catalog Variable Set) are no longer needed for the Connector for ServiceNow.

Enable permissions on ServiceNow Platform tables (Category and Catalog Item Category)

For AWS products to display under AWS portfolios as sub-categories in the ServiceNow Service Catalog, you need to modify the Application Access form for Category and Catalog Item Category tables.

1. Enter "Tables" in the Navigator and choose System Definition, then choose Tables.

2. In the list of tables, search for a table with label "Category" (or with the name "sc_category"). The list of tables will be displayed. Choose Category to view the form defining the table..

3. Choose the "Application Access" tab on the form and choose the "Can Create", “Can Update, and "Can delete" checkboxes on the form. Choose the "Update" button.

4. Repeat the steps used on the Category table above for the "Catalog Item Category" table. Type sc_cat_item_category in the “Go to Name Search” field.

ServiceNow Permissions for Administrators of the Connector Scoped App.

The AWS Service Catalog scoped app comes with two ServiceNow roles that enable access to configure the application. This enables system admins to grant one or more users privileges to administer the application without having to open up full sysadmin access to them. These roles can be assigned either to individual users or to one administrator user.

To set up application administrator privileges

1. Type Users in the navigator and select System Security – Users.

2. Select a user to grant one or both previous roles (such as admin) to. You can also Create a User.

3. Choose Edit on the Roles tab of the form.

4. Filter the collection of roles by the prefix “x_”.

5. Choose one or both of the following and add them to the user: x_126749_aws_sc_account_admin, x_126749_aws_sc_portfolio_manager
[image: image230.png]

76

AWS Service Catalog Administrator Guide

Configure ServiceNow

[image: image231.png]

6. Choose Save.

To add AWS Service Catalog to ServiceNow Service Catalog categories

1. Navigate to Self Service | Service Catalog and select the Add content icon in the upper right.

2. Select the AWS Service Catalog Product entry. Add it to your catalog home page by choosing the first Add Here link on the second row of the selection panel at the bottom of the page.

To add a change request type

1. If you are upgrading from a previous version of the AWS Service Catalog scoped app, you must remove the AWS Product Termination change request type before creating a new change request type.

2. You must add a new change request type called AWS Provisioned Product Event for the scoped application to trigger an automated change request in Change Management. For instructions, see Add a new change request type.
3. Open an existing change request.

4. Open the context (right-click) menu for Type and then choose Show Choice List.

5. Choose New and fill in the following fields:

· Table: Change Request
· Label: AWS Provisioned Product Event
· Value: AWSProvisionedProductEvent
· Sequence: pick the next unused value

6. Submit the form.

Configuring AWS Service Catalog Connector Scoped Application

Having installed and configured the AWS Service Catalog Connector for ServiceNow in the previous procedure, you must configure the AWS Service Catalog scoped application and applicable roles.

To configure the AWS Service Catalog scoped application and applicable roles

1. On your ServiceNow dashboard, create a role called order_aws_sc_products. This role is granted to any users with permission to order AWS Service Catalog products. For instructions, see Create a role.

2. Grant roles to the following users:

· System Administrator (admin): For simplicity in this example, user admin is designated as the administrator of the AWS Service Catalog scoped application. Grant this user both of the administrative permissions from the adapter, x_126749_aws_sc_portfolio_manager and x_126749_aws_sc_account_admin. In a real scenario, these roles would likely be granted to two diﬀerent users.

· Abel Tuter: The user abel.tuter is chosen as an illustrative end user. Grant Abel the new role order_aws_sc_products. This allows him to order products from AWS.

Configuring Accounts

1. Log in as the system administrator.

2. In the AWS Service Catalog scoped app Accounts menu, create two accounts, one for sync and one for provisioning: snow-stsuser-account and snow-sync-account. Note that the names here are

[image: image232.png]

77

AWS Service Catalog Administrator Guide

Configure ServiceNow

[image: image233.png]

chosen for convenience to make it easy to see which IAM user they correspond to (these are the users created in the AWS setup).

3. The snow-stsuser-account account has no regions configured. The snow-sync-account user has one region configured, matching the region where AWS Service Catalog is defined. You validate this in the next section.

4. Note that you need to use the keys and secret keys from the users you created in AWS.

Validating Connectivity to AWS Regions

You can now validate connectivity to AWS regions between the ServiceNow snow-sync-account and the AWS IAM SyncUser.

To validate connectivity to AWS regions

1. In the AWS Service Catalog scoped app, choose Accounts.

2. Select snow-sync-account and choose Validate Regions.

3. A successful connection result in the message, “Successfully performed AWS Service Catalog SearchProductsAsAdmin action in each referenced Region.”

If the AWS IAM access key or secret access key are incorrect, you will receive the message similar to the following: Error performing AWS Service Catalog SearchProductsAsAdmin action in

one or more Regions: us-east-1: The security token included in the request is invalid. Check that the access key and secret access key are correct.

Manually Syncing Scheduled Jobs

During the initial setup, manually execute the sync instead of waiting for Scheduled Jobs to run.

To sync the accounts manually

1. Log in as system administrator.

2. Find Scheduled Jobs in the navigator panel.

3. Search for job Sync all Accounts, select it, and choose Execute Now.

Note

If you do not see Execute Now in the upper left corner, choose Configure Job Definition.

Execute Now will be visible.

Granting Access to Portfolios

Data is visible in the AWS Service Catalog scoped app menus after the adapter’s scheduled synchronization job has run.

To grant access to AWS Service Catalog products in ServiceNow, you must establish a link between the AWS SnowEndUser role discovered from the Sync All Scheduled Job and snow-stsuser-account entry created in the ServiceNow AWS Service Catalog scoped app.

To grant access to AWS Service Catalog products in ServiceNow

1. In the AWS Service Catalog scoped app, choose the Identities module.

2. Select the ARN address for the AWS SnowEndUser role and assign it to account snow-stsuser-account. You can double-click the cell in the account column, or click the SCEndUser user name and edit the form presented.

[image: image234.png]

78

AWS Service Catalog Administrator Guide

Validate Configurations

[image: image235.png]

Role Grants is available within the Identities modules to conveniently associate the ServiceNow role order_aws_sc_products to the AWS SnowEndUser role identity.

3. Choose New and enter the Role of order_aws_sc_products and the SnowEndUser identity.

4. Choose Submit.

The Identities module now has a view of the associated role. You can test the AWS identity to determine if the ServiceNow end user with the order_aws_sc_products role can order an AWS Service Catalog product.

To test access to portfolios

1. Choose the Test Authorization button shown in the AWS identity module.

2. If the test is successful, the message Successfully performed SearchProducts action as arn:aws:iam::AWS Account:role/SnowEndUser is returned.

3. An unsuccessful test returns the message Error using account…

4. Given the preceding setup, Abel Tuter can now order products from AWS Service Catalog in ServiceNow.

Validate Configurations

You are now ready to validate the AWS Service Catalog Connector for ServiceNow installation procedures.

To validate the configuration of the Connector

1. Log into your ServiceNow instance as the end user (for example, Abel Tuter).

2. Type Service Catalog in the navigation filter and choose Service Catalog.

3. The user interface view displays the AWS Service Catalog category.

To order a product

1. Select the AWS Service Catalog S3 Storage product to provision.

2. Fill in the product request details including product name, parameters, and tags.

3. Choose Order Now to submit the ServiceNow request and provision the AWS Service Catalog product.

4. After approximately one minute, you receive an order status indicating that your request was submitted.

To view provisioned products

1. Go to My Assets in the ServiceNow standard user interface.

2. In My Asset Requests, view the requests that have been made.

3. To view the product, personalize the list view to show the associated configuration item by choosing the Settings icon in the header row of the table of asset requests.

4. Select Configuration item (configuration_item) and add it to the view with the > button. Move it to below Stage in the list.

5. The configuration item (the product that was ordered) shows in the list of assets.

6. To view the product, choose the configuration item name.

7. View the Outputs for the provisioned product in the Outputs tab of the form.

[image: image236.png]

79

AWS Service Catalog Administrator Guide

ServiceNow Additional Administrator Features

[image: image237.png]

8. View the provisioning history of the product in the Product Events tab of the form.

ServiceNow Additional Administrator Features

This section provides information about additional administrator features for the AWS Service Catalog Connector for ServiceNow.

Deleting AWS Service Catalog Products

The Connector for ServiceNow enables ServiceNow administrators with

x_126749_aws_sc_account_admin permission the ability to delete AWS Service Catalog products that do not have self-service actions associated.

Note

You must disassociate self-service actions from AWS Service Catalog products within the AWS Management Console before managing products with the ServiceNow platform.

To delete AWS Service Catalog products

1. In the Connector, go to AWS Service Catalog - Products. Choose the AWS Service Catalog product to delete.

2. Choose Manage Product.

3. Choose Delete Product.

4. A warning appears. Choose OK.

5. After the deletion is complete, a message appears telling you the product has been deleted.

Ordering AWS Service Catalog Products Through the ServiceNow Service Portal

The Connector for ServiceNow version 1.6.7 and above supports ordering AWS Service Catalog products through Service Portal by using the Service Catalog and Order Something views. The release also includes pages and widgets that you can add to Service Portal that enable users to view their provisioned products.

Note

The audience for the Service Portal Features section is a ServiceNow administrator or equivalent. The ServiceNow user requires permissions to modify the Service Portal.

Service Portal Widgets

The Connector for ServiceNow includes widgets that you can add to your Service Portal. It also includes two alternative view Portal Pages for the following:

· My AWS Products – Provides an overview of all provisioned products owned by the user.

· AWS Product Details – Provides details of a single provisioned product.

To access the new widgets, you need to update the Service Portal Designer.

To update the Service Portal Designer

1. Go to Create and edit a page using the Service Portal Designer.

2. Following the instructions, choose the Service Portal Index page.

3. Under the Order Something container, add the My AWS Products widget.

4. The new widget appears on your main Service Portal view.

[image: image238.png]

80

AWS Service Catalog Administrator Guide

Upgrade Instructions

[image: image239.png]

Service Portal Pages

The following section describes the two new pages available in the Service Portal Beta release of the AWS Service Catalog Connector, My AWS Products and AWS Product Details. You can add links to these pages on the Service Portal home page or other pages by using the usual page configuration mechanism in Service Portal.

My AWS Products

Provides an overview of all provisioned products owned by the user. Terminated products are displayed separately from current products in a panel that is collapsed on initial page load.

The My AWS Products page is available using the following format:

[image: image240.png]

http://<insertinstancename>.service-now.com/sp?id=aws_sc_pp

AWS Product Details

Provides details of a single provisioned product.

The AWS Product Details page is available using the following format:

[image: image241.png]

http://<insertinstancename>.service-now.com/sp?id=aws_sc_pp_details&sys_id=<provisioned product id>

Upgrade Instructions

This section provides steps for upgrading from an earlier version of the AWS Service Catalog Connector for ServiceNow.

To upgrade to the latest version of the Connector

1. Clear the ServiceNow platform cache by typing in the following URL: https:// [InsertServiceNowInstanceNameHere]/cache.do

Note

Make sure you are installing the update set in a non-production/sandbox environment. Consult a ServiceNow system administrator if you need approval to clear the ServiceNow platform cache.

2. Clear the web browser cache.

3. If you are upgrading from an earlier version, the permissions on ServiceNow Platform tables (User Criteria and Catalog Variable Set) are no longer needed for the Connector for ServiceNow.

4. Enable permissions on ServiceNow Platform tables (Category and Catalog Item Category).

5. For AWS products to display under AWS portfolios as sub-categories in the ServiceNow Service Catalog, you need to modify the Application Access form for Category and Catalog Item Category tables.

6. Enter "Tables" in the Navigator and choose System Definition, Tables.

7. In the list of tables, search for a table with label "Category" (or name "sc_category"). The list of tables will be displayed. Choose Category to view the form defining the table.

8. Choose the "Application Access" tab on the form and choose the "Can Create", “Can Update, and "Can delete" checkboxes on the form. Choose the "Update" button.

9. Repeat the steps used on the Category table above for the "Catalog Item Category" table (type sc_cat_item_category in the “Go to Name Search” field).

10. From your ServiceNow dashboard, type plugins in the navigation panel in the upper left.

11. When the System Plugins page populates, next to the dropdown that says Name, search for user criteria.

[image: image242.png]

81

AWS Service Catalog Administrator Guide

Upgrade Instructions

[image: image243.png]

12. Choose User Criteria Scoped API and then choose Activate.

13. Download the Connector for ServiceNow update set from the ServiceNow store. For users installing the update set on a ServiceNow Personal Developer Instance (PDI), download the code from Connector for ServiceNow version 2.0.2 update set.
The Connector for ServiceNow version 2.0.2 update set may be applied to a “Kingston,” “London,” or "Madrid" platform release of ServiceNow.

14. From your ServiceNow dashboard, type update sets in the navigation panel in the upper left.

15. Choose Retrieved Update Sets from the results.

16. Select Import Update Set from XML and upload the release XML file.

17. Select the AWS Service Catalog Connector for ServiceNow update set.

18. Choose Preview Update Set, which makes ServiceNow validate the connector update set.

19. Choose Update.

20. Choose Commit Update Set to apply the update set and create the application. This procedure should complete 100%.

To update permissions

1. Go to Creating IAM Policies. Following the instructions there, create a policy called SCConnectorAdmin for ServiceNow administrators to delete AWS Service Catalog products in ServiceNow that do not have self-service actions associated. Copy the following policy and paste it into Policy Document:

[image: image244.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "VisualEditor0",

"Effect": "Allow",

"Action": [

"servicecatalog:DisassociateProductFromPortfolio",

"servicecatalog:DeleteProduct",

"servicecatalog:DeleteConstraint",

"servicecatalog:DeleteProvisionedProductPlan",

"servicecatalog:DeleteProvisioningArtifact"

],

"Resource": "*"

}

]

}

Note

The ServiceCatalogServiceNowAdditionalPermissions AWS policy is no longer needed for the Connector for ServiceNow.

2. Create a policy called ServiceCatalogSSMActionsBaseline. Follow the instructions at Creating IAM Policies, and paste the following into the JSON editor:
[image: image245.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "Stmt1536341175150",

"Action": [

"servicecatalog:ListServiceActionsForProvisioningArtifact",

[image: image246.png]

82

AWS Service Catalog Administrator Guide

Upgrade Instructions

[image: image247.png]

"servicecatalog:ExecuteprovisionedProductServiceAction",

[image: image248.png]

"ssm:DescribeDocument",

"ssm:GetAutomationExecution",

"ssm:StartAutomationExecution",

"ssm:StopAutomationExecution",

"cloudformation:ListStackResources",

"ec2:DescribeInstanceStatus",

"ec2:StartInstances",

"ec2:StopInstances"

],

"Effect": "Allow",

"Resource": "*"

}

]

}

3. Update the AWSCloudFormationFullAccess policy. Choose create policy and then paste the following in the JSON editor:

[image: image249.png]

{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": [

"cloudformation:DescribeStackResource",

"cloudformation:DescribeStackResources",

"cloudformation:GetTemplate",

"cloudformation:List*",

"cloudformation:DescribeStackEvents",

"cloudformation:DescribeStacks",

"cloudformation:CreateStack",

"cloudformation:DeleteStack",

"cloudformation:DescribeStackEvents",

"cloudformation:DescribeStacks",

"cloudformation:GetTemplateSummary",

"cloudformation:SetStackPolicy",

"cloudformation:ValidateTemplate",

"cloudformation:UpdateStack",

"cloudformation:CreateChangeSet",

"cloudformation:DescribeChangeSet",

"cloudformation:ExecuteChangeSet",

"cloudformation:DeleteChangeSet",

"s3:GetObject"

],

"Resource": "*"

}

]

}

Note

AWSCloudFormationFullAccess now includes additional permissions for ChangeSets.

4. Attach the ServiceCatalogSSMActionsBaseline and AWSCloudFormationFullAccess IAM policies to the SCConnectLaunch role, which were created during the the section called “Baseline Permissions” (p. 69) setup.
[image: image250.png]

83

AWS Service Catalog Administrator Guide

Upgrade Instructions

[image: image251.png]

To add a change request type

1. When upgrading from a previous version of the AWS Service Catalog scoped app, you must remove the AWS Product Termination change request type before creating a new change request type.

2. You also must add a new change request type called AWS Provisioned Product Event for the scoped application to trigger an automated change request in Change Management. For instructions, see Add a new change request type.
· Open an existing change request.

· Open the context menu for Type and then choose Show Choice List.

· Choose New and fill in the following fields: Table - Change request
Label - AWS Provisioned Product Event Value - AWSProvisionedProductEvent Sequence - pick the next unused value

· Submit the form.

[image: image252.png]

84

AWS Service Catalog Administrator Guide

[image: image253.png]

Document History

The following table describes important additions to the AWS Service Catalog documentation.

	Feature
	Description
	Release Date

	
	
	

	New Resource
	To learn about how to use the
	April 17, 2019

	Update Constraint
	RESOURCE_UPDATE constraint to
	

	
	update tags in provisioned products,
	

	
	see AWS Service Catalog Resource
	

	
	Update Constraints (p. 34).
	

	
	
	

	Connector for
	To begin using the Connector for
	March 19, 2019

	ServiceNow
	ServiceNow, see Connector for
	

	
	ServiceNow (p. 67).
	

	
	
	

	Support for AWS
	To begin using AWS CloudFormation
	November 14, 2018

	CloudFormation
	StackSets, see Using AWS
	

	StackSets
	CloudFormation StackSets (p. 53).
	

	
	
	

	Self-service
	To begin using self-service actions,
	October 17, 2018

	actions
	see AWS Service Catalog Self-Service
	

	
	Actions (p. 43).
	

	
	
	

	CloudWatch
	To learn about CloudWatch metrics,
	September 26, 2018

	metrics
	see AWS Service Catalog CloudWatch
	

	
	Metrics (p. 64).
	

	
	
	

	Support for
	To manage tags, see AWS Service
	June 28, 2017

	TagOptions
	Catalog TagOption Library (p. 59).
	

	
	
	

	Importing a
	To import a portfolio shared from
	February 16, 2016

	portfolio
	another AWS account, see Importing a
	

	
	Portfolio (p. 53).
	

	
	
	

	Updates to
	To grant access to the end user console
	February 16, 2016

	permissions
	view, see Console Access for End
	

	information
	Users (p. 19).
	

	
	
	

	Initial release
	This is the initial release of the AWS
	July 9, 2015

	
	Service Catalog Administrator Guide.
	

	
	
	

[image: image254.png]

85

